Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Diferencia.
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2
Evalúa .
Paso 1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3
Multiplica por .
Paso 1.1.3
Evalúa .
Paso 1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.3
Multiplica por .
Paso 1.1.4
Evalúa .
Paso 1.1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.4.3
Multiplica por .
Paso 1.1.5
Diferencia con la regla de la constante.
Paso 1.1.5.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.5.2
Suma y .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Factoriza el lado izquierdo de la ecuación.
Paso 2.2.1
Factoriza de .
Paso 2.2.1.1
Factoriza de .
Paso 2.2.1.2
Factoriza de .
Paso 2.2.1.3
Factoriza de .
Paso 2.2.1.4
Factoriza de .
Paso 2.2.1.5
Factoriza de .
Paso 2.2.1.6
Factoriza de .
Paso 2.2.1.7
Factoriza de .
Paso 2.2.2
Factoriza el máximo común divisor de cada grupo.
Paso 2.2.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 2.2.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 2.2.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 2.2.4
Reescribe como .
Paso 2.2.5
Factoriza.
Paso 2.2.5.1
Factoriza.
Paso 2.2.5.1.1
Dado que ambos términos son cuadrados perfectos, factoriza con la fórmula de la diferencia de cuadrados, , donde y .
Paso 2.2.5.1.2
Elimina los paréntesis innecesarios.
Paso 2.2.5.2
Elimina los paréntesis innecesarios.
Paso 2.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2.4
Establece igual a y resuelve .
Paso 2.4.1
Establece igual a .
Paso 2.4.2
Suma a ambos lados de la ecuación.
Paso 2.5
Establece igual a y resuelve .
Paso 2.5.1
Establece igual a .
Paso 2.5.2
Resta de ambos lados de la ecuación.
Paso 2.6
Establece igual a y resuelve .
Paso 2.6.1
Establece igual a .
Paso 2.6.2
Suma a ambos lados de la ecuación.
Paso 2.7
La solución final comprende todos los valores que hacen verdadera.
Paso 3
Paso 3.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 4
Paso 4.1
Evalúa en .
Paso 4.1.1
Sustituye por .
Paso 4.1.2
Simplifica.
Paso 4.1.2.1
Simplifica cada término.
Paso 4.1.2.1.1
Eleva a la potencia de .
Paso 4.1.2.1.2
Eleva a la potencia de .
Paso 4.1.2.1.3
Multiplica por .
Paso 4.1.2.1.4
Eleva a la potencia de .
Paso 4.1.2.1.5
Multiplica por .
Paso 4.1.2.1.6
Multiplica por .
Paso 4.1.2.2
Simplifica mediante suma y resta.
Paso 4.1.2.2.1
Resta de .
Paso 4.1.2.2.2
Resta de .
Paso 4.1.2.2.3
Suma y .
Paso 4.1.2.2.4
Resta de .
Paso 4.2
Evalúa en .
Paso 4.2.1
Sustituye por .
Paso 4.2.2
Simplifica.
Paso 4.2.2.1
Simplifica cada término.
Paso 4.2.2.1.1
Eleva a la potencia de .
Paso 4.2.2.1.2
Eleva a la potencia de .
Paso 4.2.2.1.3
Multiplica por .
Paso 4.2.2.1.4
Eleva a la potencia de .
Paso 4.2.2.1.5
Multiplica por .
Paso 4.2.2.1.6
Multiplica por .
Paso 4.2.2.2
Simplifica mediante suma y resta.
Paso 4.2.2.2.1
Suma y .
Paso 4.2.2.2.2
Resta de .
Paso 4.2.2.2.3
Resta de .
Paso 4.2.2.2.4
Resta de .
Paso 4.3
Evalúa en .
Paso 4.3.1
Sustituye por .
Paso 4.3.2
Simplifica.
Paso 4.3.2.1
Simplifica cada término.
Paso 4.3.2.1.1
Uno elevado a cualquier potencia es uno.
Paso 4.3.2.1.2
Uno elevado a cualquier potencia es uno.
Paso 4.3.2.1.3
Multiplica por .
Paso 4.3.2.1.4
Uno elevado a cualquier potencia es uno.
Paso 4.3.2.1.5
Multiplica por .
Paso 4.3.2.1.6
Multiplica por .
Paso 4.3.2.2
Simplifica mediante suma y resta.
Paso 4.3.2.2.1
Resta de .
Paso 4.3.2.2.2
Resta de .
Paso 4.3.2.2.3
Suma y .
Paso 4.3.2.2.4
Resta de .
Paso 4.4
Enumera todos los puntos.
Paso 5