Cálculo Ejemplos

Hallar los puntos críticos -2sin(2x)
Paso 1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 1.1.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.1.2.2
La derivada de con respecto a es .
Paso 1.1.2.3
Reemplaza todos los casos de con .
Paso 1.1.3
Diferencia.
Toca para ver más pasos...
Paso 1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.2
Multiplica por .
Paso 1.1.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.4
Multiplica por .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.2.1
Divide cada término en por .
Paso 2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.2.1.1
Cancela el factor común.
Paso 2.2.2.1.2
Divide por .
Paso 2.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.2.3.1
Divide por .
Paso 2.3
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Paso 2.4
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.4.1
El valor exacto de es .
Paso 2.5
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.5.1
Divide cada término en por .
Paso 2.5.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.5.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.5.2.1.1
Cancela el factor común.
Paso 2.5.2.1.2
Divide por .
Paso 2.5.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.5.3.1
Multiplica el numerador por la recíproca del denominador.
Paso 2.5.3.2
Multiplica .
Toca para ver más pasos...
Paso 2.5.3.2.1
Multiplica por .
Paso 2.5.3.2.2
Multiplica por .
Paso 2.6
La función coseno es positiva en el primer y el cuarto cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Paso 2.7
Resuelve
Toca para ver más pasos...
Paso 2.7.1
Simplifica.
Toca para ver más pasos...
Paso 2.7.1.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 2.7.1.2
Combina y .
Paso 2.7.1.3
Combina los numeradores sobre el denominador común.
Paso 2.7.1.4
Multiplica por .
Paso 2.7.1.5
Resta de .
Paso 2.7.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.7.2.1
Divide cada término en por .
Paso 2.7.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.7.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.7.2.2.1.1
Cancela el factor común.
Paso 2.7.2.2.1.2
Divide por .
Paso 2.7.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.7.2.3.1
Multiplica el numerador por la recíproca del denominador.
Paso 2.7.2.3.2
Multiplica .
Toca para ver más pasos...
Paso 2.7.2.3.2.1
Multiplica por .
Paso 2.7.2.3.2.2
Multiplica por .
Paso 2.8
Obtén el período de .
Toca para ver más pasos...
Paso 2.8.1
El período de la función puede calcularse mediante .
Paso 2.8.2
Reemplaza con en la fórmula para el período.
Paso 2.8.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 2.8.4
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.8.4.1
Cancela el factor común.
Paso 2.8.4.2
Divide por .
Paso 2.9
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
Paso 2.10
Consolida las respuestas.
, para cualquier número entero
, para cualquier número entero
Paso 3
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 3.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 4
Evalúa en cada valor donde la derivada sea o indefinida.
Toca para ver más pasos...
Paso 4.1
Evalúa en .
Toca para ver más pasos...
Paso 4.1.1
Sustituye por .
Paso 4.1.2
Simplifica.
Toca para ver más pasos...
Paso 4.1.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.1.2.1.1
Factoriza de .
Paso 4.1.2.1.2
Cancela el factor común.
Paso 4.1.2.1.3
Reescribe la expresión.
Paso 4.1.2.2
El valor exacto de es .
Paso 4.1.2.3
Multiplica por .
Paso 4.2
Evalúa en .
Toca para ver más pasos...
Paso 4.2.1
Sustituye por .
Paso 4.2.2
Simplifica.
Toca para ver más pasos...
Paso 4.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.2.2.1.1
Factoriza de .
Paso 4.2.2.1.2
Cancela el factor común.
Paso 4.2.2.1.3
Reescribe la expresión.
Paso 4.2.2.2
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante. Haz que la expresión sea negativa porque el seno es negativo en el cuarto cuadrante.
Paso 4.2.2.3
El valor exacto de es .
Paso 4.2.2.4
Multiplica .
Toca para ver más pasos...
Paso 4.2.2.4.1
Multiplica por .
Paso 4.2.2.4.2
Multiplica por .
Paso 4.3
Enumera todos los puntos.
, para cualquier número entero
, para cualquier número entero
Paso 5