Cálculo Ejemplos

Hallar los puntos críticos f(x)=1/(x^2-2x+8)
Paso 1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1
Reescribe como .
Paso 1.1.2
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 1.1.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3
Reemplaza todos los casos de con .
Paso 1.1.3
Diferencia.
Toca para ver más pasos...
Paso 1.1.3.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.5
Multiplica por .
Paso 1.1.3.6
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.7
Suma y .
Paso 1.1.4
Simplifica.
Toca para ver más pasos...
Paso 1.1.4.1
Reescribe la expresión mediante la regla del exponente negativo .
Paso 1.1.4.2
Reordena los factores de .
Paso 1.1.4.3
Aplica la propiedad distributiva.
Paso 1.1.4.4
Multiplica por .
Paso 1.1.4.5
Multiplica por .
Paso 1.1.4.6
Multiplica por .
Paso 1.1.4.7
Factoriza de .
Toca para ver más pasos...
Paso 1.1.4.7.1
Factoriza de .
Paso 1.1.4.7.2
Factoriza de .
Paso 1.1.4.7.3
Factoriza de .
Paso 1.1.4.8
Factoriza de .
Paso 1.1.4.9
Reescribe como .
Paso 1.1.4.10
Factoriza de .
Paso 1.1.4.11
Reescribe como .
Paso 1.1.4.12
Mueve el negativo al frente de la fracción.
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Establece el numerador igual a cero.
Paso 2.3
Resuelve la ecuación en .
Toca para ver más pasos...
Paso 2.3.1
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.3.1.1
Divide cada término en por .
Paso 2.3.1.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.3.1.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.3.1.2.1.1
Cancela el factor común.
Paso 2.3.1.2.1.2
Divide por .
Paso 2.3.1.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.3.1.3.1
Divide por .
Paso 2.3.2
Suma a ambos lados de la ecuación.
Paso 3
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 3.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 4
Evalúa en cada valor donde la derivada sea o indefinida.
Toca para ver más pasos...
Paso 4.1
Evalúa en .
Toca para ver más pasos...
Paso 4.1.1
Sustituye por .
Paso 4.1.2
Simplifica el denominador.
Toca para ver más pasos...
Paso 4.1.2.1
Uno elevado a cualquier potencia es uno.
Paso 4.1.2.2
Multiplica por .
Paso 4.1.2.3
Resta de .
Paso 4.1.2.4
Suma y .
Paso 4.2
Enumera todos los puntos.
Paso 5