Cálculo Ejemplos

Hallar los puntos críticos f(x)=1/3x^3-x
Paso 1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2
Evalúa .
Toca para ver más pasos...
Paso 1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3
Combina y .
Paso 1.1.2.4
Combina y .
Paso 1.1.2.5
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.1.2.5.1
Cancela el factor común.
Paso 1.1.2.5.2
Divide por .
Paso 1.1.3
Evalúa .
Toca para ver más pasos...
Paso 1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.3
Multiplica por .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Suma a ambos lados de la ecuación.
Paso 2.3
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 2.4
Cualquier raíz de es .
Paso 2.5
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 2.5.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 2.5.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 2.5.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 3
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 3.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 4
Evalúa en cada valor donde la derivada sea o indefinida.
Toca para ver más pasos...
Paso 4.1
Evalúa en .
Toca para ver más pasos...
Paso 4.1.1
Sustituye por .
Paso 4.1.2
Simplifica.
Toca para ver más pasos...
Paso 4.1.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.1.2.1.1
Uno elevado a cualquier potencia es uno.
Paso 4.1.2.1.2
Multiplica por .
Paso 4.1.2.1.3
Multiplica por .
Paso 4.1.2.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 4.1.2.3
Combina y .
Paso 4.1.2.4
Combina los numeradores sobre el denominador común.
Paso 4.1.2.5
Simplifica el numerador.
Toca para ver más pasos...
Paso 4.1.2.5.1
Multiplica por .
Paso 4.1.2.5.2
Resta de .
Paso 4.1.2.6
Mueve el negativo al frente de la fracción.
Paso 4.2
Evalúa en .
Toca para ver más pasos...
Paso 4.2.1
Sustituye por .
Paso 4.2.2
Simplifica.
Toca para ver más pasos...
Paso 4.2.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.2.2.1.1
Eleva a la potencia de .
Paso 4.2.2.1.2
Combina y .
Paso 4.2.2.1.3
Mueve el negativo al frente de la fracción.
Paso 4.2.2.1.4
Multiplica por .
Paso 4.2.2.2
Simplifica la expresión.
Toca para ver más pasos...
Paso 4.2.2.2.1
Escribe como una fracción con un denominador común.
Paso 4.2.2.2.2
Combina los numeradores sobre el denominador común.
Paso 4.2.2.2.3
Suma y .
Paso 4.3
Enumera todos los puntos.
Paso 5