Cálculo Ejemplos

Hallar los puntos críticos f(x)=x raíz cuadrada de 10-x
Paso 1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1
Usa para reescribir como .
Paso 1.1.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 1.1.3
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 1.1.3.1
Para aplicar la regla de la cadena, establece como .
Paso 1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.3
Reemplaza todos los casos de con .
Paso 1.1.4
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.1.5
Combina y .
Paso 1.1.6
Combina los numeradores sobre el denominador común.
Paso 1.1.7
Simplifica el numerador.
Toca para ver más pasos...
Paso 1.1.7.1
Multiplica por .
Paso 1.1.7.2
Resta de .
Paso 1.1.8
Combina fracciones.
Toca para ver más pasos...
Paso 1.1.8.1
Mueve el negativo al frente de la fracción.
Paso 1.1.8.2
Combina y .
Paso 1.1.8.3
Mueve al denominador mediante la regla del exponente negativo .
Paso 1.1.8.4
Combina y .
Paso 1.1.9
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.10
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.11
Suma y .
Paso 1.1.12
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.13
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.14
Combina fracciones.
Toca para ver más pasos...
Paso 1.1.14.1
Multiplica por .
Paso 1.1.14.2
Combina y .
Paso 1.1.14.3
Simplifica la expresión.
Toca para ver más pasos...
Paso 1.1.14.3.1
Mueve a la izquierda de .
Paso 1.1.14.3.2
Reescribe como .
Paso 1.1.14.3.3
Mueve el negativo al frente de la fracción.
Paso 1.1.15
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.16
Multiplica por .
Paso 1.1.17
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.1.18
Combina y .
Paso 1.1.19
Combina los numeradores sobre el denominador común.
Paso 1.1.20
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 1.1.20.1
Mueve .
Paso 1.1.20.2
Usa la regla de la potencia para combinar exponentes.
Paso 1.1.20.3
Combina los numeradores sobre el denominador común.
Paso 1.1.20.4
Suma y .
Paso 1.1.20.5
Divide por .
Paso 1.1.21
Simplifica .
Paso 1.1.22
Mueve a la izquierda de .
Paso 1.1.23
Simplifica.
Toca para ver más pasos...
Paso 1.1.23.1
Aplica la propiedad distributiva.
Paso 1.1.23.2
Simplifica el numerador.
Toca para ver más pasos...
Paso 1.1.23.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.1.23.2.1.1
Multiplica por .
Paso 1.1.23.2.1.2
Multiplica por .
Paso 1.1.23.2.2
Resta de .
Paso 1.1.23.3
Factoriza de .
Paso 1.1.23.4
Reescribe como .
Paso 1.1.23.5
Factoriza de .
Paso 1.1.23.6
Reescribe como .
Paso 1.1.23.7
Mueve el negativo al frente de la fracción.
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Establece el numerador igual a cero.
Paso 2.3
Resuelve la ecuación en .
Toca para ver más pasos...
Paso 2.3.1
Suma a ambos lados de la ecuación.
Paso 2.3.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.3.2.1
Divide cada término en por .
Paso 2.3.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.3.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.3.2.2.1.1
Cancela el factor común.
Paso 2.3.2.2.1.2
Divide por .
Paso 3
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 3.1
Convierte las expresiones con exponentes fraccionarios en radicales.
Toca para ver más pasos...
Paso 3.1.1
Aplica la regla para reescribir la exponenciación como un radical.
Paso 3.1.2
Cualquier número elevado a la potencia de es la misma base.
Paso 3.2
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 3.3
Resuelve
Toca para ver más pasos...
Paso 3.3.1
Para eliminar el radical en el lazo izquierdo de la ecuación, eleva al cuadrado ambos lados de la ecuación.
Paso 3.3.2
Simplifica cada lado de la ecuación.
Toca para ver más pasos...
Paso 3.3.2.1
Usa para reescribir como .
Paso 3.3.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.3.2.2.1
Simplifica .
Toca para ver más pasos...
Paso 3.3.2.2.1.1
Aplica la regla del producto a .
Paso 3.3.2.2.1.2
Eleva a la potencia de .
Paso 3.3.2.2.1.3
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 3.3.2.2.1.3.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.3.2.2.1.3.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.3.2.2.1.3.2.1
Cancela el factor común.
Paso 3.3.2.2.1.3.2.2
Reescribe la expresión.
Paso 3.3.2.2.1.4
Simplifica.
Paso 3.3.2.2.1.5
Aplica la propiedad distributiva.
Paso 3.3.2.2.1.6
Multiplica.
Toca para ver más pasos...
Paso 3.3.2.2.1.6.1
Multiplica por .
Paso 3.3.2.2.1.6.2
Multiplica por .
Paso 3.3.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.3.2.3.1
Elevar a cualquier potencia positiva da como resultado .
Paso 3.3.3
Resuelve
Toca para ver más pasos...
Paso 3.3.3.1
Resta de ambos lados de la ecuación.
Paso 3.3.3.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.3.3.2.1
Divide cada término en por .
Paso 3.3.3.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.3.3.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.3.3.2.2.1.1
Cancela el factor común.
Paso 3.3.3.2.2.1.2
Divide por .
Paso 3.3.3.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.3.3.2.3.1
Divide por .
Paso 3.4
Establece el radicando en menor que para obtener el lugar donde no está definida la expresión.
Paso 3.5
Resuelve
Toca para ver más pasos...
Paso 3.5.1
Resta de ambos lados de la desigualdad.
Paso 3.5.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.5.2.1
Divide cada término de por . Cuando multipliques o dividas ambos lados de una desigualdad por un valor negativo, cambia la dirección del signo de desigualdad.
Paso 3.5.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.5.2.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 3.5.2.2.2
Divide por .
Paso 3.5.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.5.2.3.1
Divide por .
Paso 3.6
La ecuación es indefinida cuando el denominador es igual a , el argumento de una raíz cuadrada es menor que o el argumento de un logaritmo es menor o igual que .
Paso 4
Evalúa en cada valor donde la derivada sea o indefinida.
Toca para ver más pasos...
Paso 4.1
Evalúa en .
Toca para ver más pasos...
Paso 4.1.1
Sustituye por .
Paso 4.1.2
Simplifica.
Toca para ver más pasos...
Paso 4.1.2.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 4.1.2.2
Combina y .
Paso 4.1.2.3
Combina los numeradores sobre el denominador común.
Paso 4.1.2.4
Simplifica el numerador.
Toca para ver más pasos...
Paso 4.1.2.4.1
Multiplica por .
Paso 4.1.2.4.2
Resta de .
Paso 4.1.2.5
Reescribe como .
Paso 4.1.2.6
Multiplica por .
Paso 4.1.2.7
Combina y simplifica el denominador.
Toca para ver más pasos...
Paso 4.1.2.7.1
Multiplica por .
Paso 4.1.2.7.2
Eleva a la potencia de .
Paso 4.1.2.7.3
Eleva a la potencia de .
Paso 4.1.2.7.4
Usa la regla de la potencia para combinar exponentes.
Paso 4.1.2.7.5
Suma y .
Paso 4.1.2.7.6
Reescribe como .
Toca para ver más pasos...
Paso 4.1.2.7.6.1
Usa para reescribir como .
Paso 4.1.2.7.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 4.1.2.7.6.3
Combina y .
Paso 4.1.2.7.6.4
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.1.2.7.6.4.1
Cancela el factor común.
Paso 4.1.2.7.6.4.2
Reescribe la expresión.
Paso 4.1.2.7.6.5
Evalúa el exponente.
Paso 4.1.2.8
Simplifica el numerador.
Toca para ver más pasos...
Paso 4.1.2.8.1
Combina con la regla del producto para radicales.
Paso 4.1.2.8.2
Multiplica por .
Paso 4.1.2.9
Multiplica .
Toca para ver más pasos...
Paso 4.1.2.9.1
Multiplica por .
Paso 4.1.2.9.2
Multiplica por .
Paso 4.2
Evalúa en .
Toca para ver más pasos...
Paso 4.2.1
Sustituye por .
Paso 4.2.2
Simplifica.
Toca para ver más pasos...
Paso 4.2.2.1
Multiplica por .
Paso 4.2.2.2
Resta de .
Paso 4.2.2.3
Reescribe como .
Paso 4.2.2.4
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 4.2.2.5
Multiplica por .
Paso 4.3
Enumera todos los puntos.
Paso 5