Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2
Evalúa .
Paso 1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3
Multiplica por .
Paso 1.1.3
Evalúa .
Paso 1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.3
Multiplica por .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Suma a ambos lados de la ecuación.
Paso 2.3
Divide cada término en por y simplifica.
Paso 2.3.1
Divide cada término en por .
Paso 2.3.2
Simplifica el lado izquierdo.
Paso 2.3.2.1
Cancela el factor común de .
Paso 2.3.2.1.1
Cancela el factor común.
Paso 2.3.2.1.2
Divide por .
Paso 2.3.3
Simplifica el lado derecho.
Paso 2.3.3.1
Cancela el factor común de y .
Paso 2.3.3.1.1
Factoriza de .
Paso 2.3.3.1.2
Cancela los factores comunes.
Paso 2.3.3.1.2.1
Factoriza de .
Paso 2.3.3.1.2.2
Cancela el factor común.
Paso 2.3.3.1.2.3
Reescribe la expresión.
Paso 2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 2.5
Simplifica .
Paso 2.5.1
Reescribe como .
Paso 2.5.2
Cualquier raíz de es .
Paso 2.5.3
Multiplica por .
Paso 2.5.4
Combina y simplifica el denominador.
Paso 2.5.4.1
Multiplica por .
Paso 2.5.4.2
Eleva a la potencia de .
Paso 2.5.4.3
Eleva a la potencia de .
Paso 2.5.4.4
Usa la regla de la potencia para combinar exponentes.
Paso 2.5.4.5
Suma y .
Paso 2.5.4.6
Reescribe como .
Paso 2.5.4.6.1
Usa para reescribir como .
Paso 2.5.4.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.5.4.6.3
Combina y .
Paso 2.5.4.6.4
Cancela el factor común de .
Paso 2.5.4.6.4.1
Cancela el factor común.
Paso 2.5.4.6.4.2
Reescribe la expresión.
Paso 2.5.4.6.5
Evalúa el exponente.
Paso 2.6
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 2.6.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 2.6.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 2.6.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 3
Paso 3.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 4
Paso 4.1
Evalúa en .
Paso 4.1.1
Sustituye por .
Paso 4.1.2
Simplifica.
Paso 4.1.2.1
Simplifica cada término.
Paso 4.1.2.1.1
Aplica la regla del producto a .
Paso 4.1.2.1.2
Simplifica el numerador.
Paso 4.1.2.1.2.1
Reescribe como .
Paso 4.1.2.1.2.2
Eleva a la potencia de .
Paso 4.1.2.1.2.3
Reescribe como .
Paso 4.1.2.1.2.3.1
Factoriza de .
Paso 4.1.2.1.2.3.2
Reescribe como .
Paso 4.1.2.1.2.4
Retira los términos de abajo del radical.
Paso 4.1.2.1.3
Eleva a la potencia de .
Paso 4.1.2.1.4
Cancela el factor común de y .
Paso 4.1.2.1.4.1
Factoriza de .
Paso 4.1.2.1.4.2
Cancela los factores comunes.
Paso 4.1.2.1.4.2.1
Factoriza de .
Paso 4.1.2.1.4.2.2
Cancela el factor común.
Paso 4.1.2.1.4.2.3
Reescribe la expresión.
Paso 4.1.2.1.5
Combina y .
Paso 4.1.2.1.6
Combina y .
Paso 4.1.2.1.7
Mueve el negativo al frente de la fracción.
Paso 4.1.2.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 4.1.2.3
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Paso 4.1.2.3.1
Multiplica por .
Paso 4.1.2.3.2
Multiplica por .
Paso 4.1.2.4
Combina los numeradores sobre el denominador común.
Paso 4.1.2.5
Simplifica el numerador.
Paso 4.1.2.5.1
Multiplica por .
Paso 4.1.2.5.2
Resta de .
Paso 4.1.2.6
Mueve el negativo al frente de la fracción.
Paso 4.2
Evalúa en .
Paso 4.2.1
Sustituye por .
Paso 4.2.2
Simplifica.
Paso 4.2.2.1
Simplifica cada término.
Paso 4.2.2.1.1
Usa la regla de la potencia para distribuir el exponente.
Paso 4.2.2.1.1.1
Aplica la regla del producto a .
Paso 4.2.2.1.1.2
Aplica la regla del producto a .
Paso 4.2.2.1.2
Eleva a la potencia de .
Paso 4.2.2.1.3
Simplifica el numerador.
Paso 4.2.2.1.3.1
Reescribe como .
Paso 4.2.2.1.3.2
Eleva a la potencia de .
Paso 4.2.2.1.3.3
Reescribe como .
Paso 4.2.2.1.3.3.1
Factoriza de .
Paso 4.2.2.1.3.3.2
Reescribe como .
Paso 4.2.2.1.3.4
Retira los términos de abajo del radical.
Paso 4.2.2.1.4
Eleva a la potencia de .
Paso 4.2.2.1.5
Cancela el factor común de y .
Paso 4.2.2.1.5.1
Factoriza de .
Paso 4.2.2.1.5.2
Cancela los factores comunes.
Paso 4.2.2.1.5.2.1
Factoriza de .
Paso 4.2.2.1.5.2.2
Cancela el factor común.
Paso 4.2.2.1.5.2.3
Reescribe la expresión.
Paso 4.2.2.1.6
Multiplica .
Paso 4.2.2.1.6.1
Multiplica por .
Paso 4.2.2.1.6.2
Combina y .
Paso 4.2.2.1.7
Mueve el negativo al frente de la fracción.
Paso 4.2.2.1.8
Multiplica .
Paso 4.2.2.1.8.1
Multiplica por .
Paso 4.2.2.1.8.2
Combina y .
Paso 4.2.2.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 4.2.2.3
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Paso 4.2.2.3.1
Multiplica por .
Paso 4.2.2.3.2
Multiplica por .
Paso 4.2.2.4
Combina los numeradores sobre el denominador común.
Paso 4.2.2.5
Simplifica el numerador.
Paso 4.2.2.5.1
Multiplica por .
Paso 4.2.2.5.2
Suma y .
Paso 4.3
Enumera todos los puntos.
Paso 5