Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Diferencia.
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2
Evalúa .
Paso 1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3
Multiplica por .
Paso 1.1.3
Diferencia con la regla de la constante.
Paso 1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.2
Suma y .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Suma a ambos lados de la ecuación.
Paso 2.3
Resta de ambos lados de la ecuación.
Paso 2.4
Factoriza el lado izquierdo de la ecuación.
Paso 2.4.1
Factoriza de .
Paso 2.4.1.1
Factoriza de .
Paso 2.4.1.2
Factoriza de .
Paso 2.4.1.3
Factoriza de .
Paso 2.4.2
Reescribe como .
Paso 2.4.3
Dado que ambos términos son cubos perfectos, factoriza con la fórmula de la diferencia de cubos, , donde y .
Paso 2.4.4
Factoriza.
Paso 2.4.4.1
Simplifica.
Paso 2.4.4.1.1
Mueve a la izquierda de .
Paso 2.4.4.1.2
Eleva a la potencia de .
Paso 2.4.4.2
Elimina los paréntesis innecesarios.
Paso 2.5
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2.6
Establece igual a y resuelve .
Paso 2.6.1
Establece igual a .
Paso 2.6.2
Suma a ambos lados de la ecuación.
Paso 2.7
Establece igual a y resuelve .
Paso 2.7.1
Establece igual a .
Paso 2.7.2
Resuelve en .
Paso 2.7.2.1
Usa la fórmula cuadrática para obtener las soluciones.
Paso 2.7.2.2
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 2.7.2.3
Simplifica.
Paso 2.7.2.3.1
Simplifica el numerador.
Paso 2.7.2.3.1.1
Eleva a la potencia de .
Paso 2.7.2.3.1.2
Multiplica .
Paso 2.7.2.3.1.2.1
Multiplica por .
Paso 2.7.2.3.1.2.2
Multiplica por .
Paso 2.7.2.3.1.3
Resta de .
Paso 2.7.2.3.1.4
Reescribe como .
Paso 2.7.2.3.1.5
Reescribe como .
Paso 2.7.2.3.1.6
Reescribe como .
Paso 2.7.2.3.1.7
Reescribe como .
Paso 2.7.2.3.1.7.1
Factoriza de .
Paso 2.7.2.3.1.7.2
Reescribe como .
Paso 2.7.2.3.1.8
Retira los términos de abajo del radical.
Paso 2.7.2.3.1.9
Mueve a la izquierda de .
Paso 2.7.2.3.2
Multiplica por .
Paso 2.7.2.3.3
Simplifica .
Paso 2.7.2.4
Simplifica la expresión para obtener el valor de la parte de .
Paso 2.7.2.4.1
Simplifica el numerador.
Paso 2.7.2.4.1.1
Eleva a la potencia de .
Paso 2.7.2.4.1.2
Multiplica .
Paso 2.7.2.4.1.2.1
Multiplica por .
Paso 2.7.2.4.1.2.2
Multiplica por .
Paso 2.7.2.4.1.3
Resta de .
Paso 2.7.2.4.1.4
Reescribe como .
Paso 2.7.2.4.1.5
Reescribe como .
Paso 2.7.2.4.1.6
Reescribe como .
Paso 2.7.2.4.1.7
Reescribe como .
Paso 2.7.2.4.1.7.1
Factoriza de .
Paso 2.7.2.4.1.7.2
Reescribe como .
Paso 2.7.2.4.1.8
Retira los términos de abajo del radical.
Paso 2.7.2.4.1.9
Mueve a la izquierda de .
Paso 2.7.2.4.2
Multiplica por .
Paso 2.7.2.4.3
Simplifica .
Paso 2.7.2.4.4
Cambia a .
Paso 2.7.2.5
Simplifica la expresión para obtener el valor de la parte de .
Paso 2.7.2.5.1
Simplifica el numerador.
Paso 2.7.2.5.1.1
Eleva a la potencia de .
Paso 2.7.2.5.1.2
Multiplica .
Paso 2.7.2.5.1.2.1
Multiplica por .
Paso 2.7.2.5.1.2.2
Multiplica por .
Paso 2.7.2.5.1.3
Resta de .
Paso 2.7.2.5.1.4
Reescribe como .
Paso 2.7.2.5.1.5
Reescribe como .
Paso 2.7.2.5.1.6
Reescribe como .
Paso 2.7.2.5.1.7
Reescribe como .
Paso 2.7.2.5.1.7.1
Factoriza de .
Paso 2.7.2.5.1.7.2
Reescribe como .
Paso 2.7.2.5.1.8
Retira los términos de abajo del radical.
Paso 2.7.2.5.1.9
Mueve a la izquierda de .
Paso 2.7.2.5.2
Multiplica por .
Paso 2.7.2.5.3
Simplifica .
Paso 2.7.2.5.4
Cambia a .
Paso 2.7.2.6
La respuesta final es la combinación de ambas soluciones.
Paso 2.8
La solución final comprende todos los valores que hacen verdadera.
Paso 3
Paso 3.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 4
Paso 4.1
Evalúa en .
Paso 4.1.1
Sustituye por .
Paso 4.1.2
Simplifica.
Paso 4.1.2.1
Simplifica cada término.
Paso 4.1.2.1.1
Eleva a la potencia de .
Paso 4.1.2.1.2
Multiplica por .
Paso 4.1.2.2
Simplifica mediante suma y resta.
Paso 4.1.2.2.1
Resta de .
Paso 4.1.2.2.2
Suma y .
Paso 4.2
Enumera todos los puntos.
Paso 5