Cálculo Ejemplos

Hallar los puntos críticos f(x)=(x-1)/x
Paso 1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1
Diferencia con la regla del cociente, que establece que es donde y .
Paso 1.1.2
Diferencia.
Toca para ver más pasos...
Paso 1.1.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.4
Simplifica la expresión.
Toca para ver más pasos...
Paso 1.1.2.4.1
Suma y .
Paso 1.1.2.4.2
Multiplica por .
Paso 1.1.2.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.6
Multiplica por .
Paso 1.1.3
Simplifica.
Toca para ver más pasos...
Paso 1.1.3.1
Aplica la propiedad distributiva.
Paso 1.1.3.2
Simplifica el numerador.
Toca para ver más pasos...
Paso 1.1.3.2.1
Resta de .
Paso 1.1.3.2.2
Resta de .
Paso 1.1.3.2.3
Multiplica por .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Establece el numerador igual a cero.
Paso 2.3
Como , no hay soluciones.
No hay solución
No hay solución
Paso 3
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 3.1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 3.2
Resuelve
Toca para ver más pasos...
Paso 3.2.1
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 3.2.2
Simplifica .
Toca para ver más pasos...
Paso 3.2.2.1
Reescribe como .
Paso 3.2.2.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 3.2.2.3
Más o menos es .
Paso 4
Evalúa en cada valor donde la derivada sea o indefinida.
Toca para ver más pasos...
Paso 4.1
Evalúa en .
Toca para ver más pasos...
Paso 4.1.1
Sustituye por .
Paso 4.1.2
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Indefinida
Indefinida
Paso 5
No hay valores de en el dominio del problema original donde la derivada es o indefinida.
No se obtuvieron puntos críticos