Cálculo Ejemplos

البحث عن خط المماس في x=3 f(x)=0.5x^2-2x-4 , x=3
,
Paso 1
Find the corresponding -value to .
Toca para ver más pasos...
Paso 1.1
Sustituye por .
Paso 1.2
Resuelve
Toca para ver más pasos...
Paso 1.2.1
Elimina los paréntesis.
Paso 1.2.2
Elimina los paréntesis.
Paso 1.2.3
Simplifica .
Toca para ver más pasos...
Paso 1.2.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.2.3.1.1
Eleva a la potencia de .
Paso 1.2.3.1.2
Multiplica por .
Paso 1.2.3.1.3
Multiplica por .
Paso 1.2.3.2
Simplifica mediante la resta de números.
Toca para ver más pasos...
Paso 1.2.3.2.1
Resta de .
Paso 1.2.3.2.2
Resta de .
Paso 2
Obtén la primera derivada y evalúa en y para obtener la pendiente de la recta tangente.
Toca para ver más pasos...
Paso 2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2
Evalúa .
Toca para ver más pasos...
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3
Multiplica por .
Paso 2.2.4
Multiplica por .
Paso 2.3
Evalúa .
Toca para ver más pasos...
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.3
Multiplica por .
Paso 2.4
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 2.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.4.2
Suma y .
Paso 2.5
Evalúa la derivada en .
Paso 2.6
Resta de .
Paso 3
Inserta los valores del punto y la pendiente en la fórmula de punto-pendiente y resuelve .
Toca para ver más pasos...
Paso 3.1
Usa la pendiente y un punto dado para sustituir y en la ecuación punto-pendiente , que deriva de la ecuación pendiente .
Paso 3.2
Simplifica la ecuación y mantenla en ecuación punto-pendiente.
Paso 3.3
Resuelve
Toca para ver más pasos...
Paso 3.3.1
Multiplica por .
Paso 3.3.2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 3.3.2.1
Resta de ambos lados de la ecuación.
Paso 3.3.2.2
Resta de .
Paso 4