Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Reescribe la ecuación en forma de vértice.
Paso 1.1.1
Reordena y .
Paso 1.1.2
Completa el cuadrado de .
Paso 1.1.2.1
Usa la forma , para obtener los valores de , y .
Paso 1.1.2.2
Considera la forma de vértice de una parábola.
Paso 1.1.2.3
Obtén el valor de con la fórmula .
Paso 1.1.2.3.1
Sustituye los valores de y en la fórmula .
Paso 1.1.2.3.2
Simplifica el lado derecho.
Paso 1.1.2.3.2.1
Multiplica por .
Paso 1.1.2.3.2.2
Mueve el negativo al frente de la fracción.
Paso 1.1.2.4
Obtén el valor de con la fórmula .
Paso 1.1.2.4.1
Sustituye los valores de , y en la fórmula .
Paso 1.1.2.4.2
Simplifica el lado derecho.
Paso 1.1.2.4.2.1
Simplifica cada término.
Paso 1.1.2.4.2.1.1
Eleva a la potencia de .
Paso 1.1.2.4.2.1.2
Multiplica por .
Paso 1.1.2.4.2.1.3
Mueve el negativo al frente de la fracción.
Paso 1.1.2.4.2.1.4
Multiplica .
Paso 1.1.2.4.2.1.4.1
Multiplica por .
Paso 1.1.2.4.2.1.4.2
Multiplica por .
Paso 1.1.2.4.2.2
Suma y .
Paso 1.1.2.5
Sustituye los valores de , y en la forma de vértice .
Paso 1.1.3
Establece igual al nuevo lado derecho.
Paso 1.2
Usa la forma de vértice, , para determinar los valores de , y .
Paso 1.3
Como el valor de es negativo, la parábola se abre hacia abajo.
Abre hacia abajo
Paso 1.4
Obtén el vértice .
Paso 1.5
Obtén , la distancia desde el vértice hasta el foco.
Paso 1.5.1
Obtén la distancia desde el vértice hasta un foco de la parábola con la siguiente fórmula.
Paso 1.5.2
Sustituye el valor de en la fórmula.
Paso 1.5.3
Cancela el factor común de y .
Paso 1.5.3.1
Reescribe como .
Paso 1.5.3.2
Mueve el negativo al frente de la fracción.
Paso 1.6
Obtén el foco.
Paso 1.6.1
El foco de una parábola puede obtenerse al sumar a la coordenada y si la parábola abre hacia arriba o hacia abajo.
Paso 1.6.2
Sustituye los valores conocidos de , y en la fórmula y simplifica.
Paso 1.7
Obtén el eje de simetría mediante la obtención de la línea que pasa por el vértice y el foco.
Paso 1.8
Obtén la directriz.
Paso 1.8.1
La directriz de una parábola es la recta horizontal que se obtiene al restar de la coordenada y del vértice si la parábola abre hacia arriba o hacia abajo.
Paso 1.8.2
Sustituye los valores conocidos de y en la fórmula y simplifica.
Paso 1.9
Usa las propiedades de la parábola para analizar y graficar la parábola.
Dirección: abre hacia abajo
Vértice:
Foco:
Eje de simetría:
Directriz:
Dirección: abre hacia abajo
Vértice:
Foco:
Eje de simetría:
Directriz:
Paso 2
Paso 2.1
Reemplaza la variable con en la expresión.
Paso 2.2
Simplifica el resultado.
Paso 2.2.1
Simplifica cada término.
Paso 2.2.1.1
Eleva a la potencia de .
Paso 2.2.1.2
Multiplica por .
Paso 2.2.1.3
Multiplica por .
Paso 2.2.2
Suma y .
Paso 2.2.3
La respuesta final es .
Paso 2.3
El valor de en es .
Paso 2.4
Reemplaza la variable con en la expresión.
Paso 2.5
Simplifica el resultado.
Paso 2.5.1
Simplifica cada término.
Paso 2.5.1.1
Eleva a la potencia de .
Paso 2.5.1.2
Multiplica por .
Paso 2.5.1.3
Multiplica por .
Paso 2.5.2
Suma y .
Paso 2.5.3
La respuesta final es .
Paso 2.6
El valor de en es .
Paso 2.7
Reemplaza la variable con en la expresión.
Paso 2.8
Simplifica el resultado.
Paso 2.8.1
Simplifica cada término.
Paso 2.8.1.1
Eleva a la potencia de .
Paso 2.8.1.2
Multiplica por .
Paso 2.8.1.3
Multiplica por .
Paso 2.8.2
Suma y .
Paso 2.8.3
La respuesta final es .
Paso 2.9
El valor de en es .
Paso 2.10
Reemplaza la variable con en la expresión.
Paso 2.11
Simplifica el resultado.
Paso 2.11.1
Simplifica cada término.
Paso 2.11.1.1
Eleva a la potencia de .
Paso 2.11.1.2
Multiplica por .
Paso 2.11.1.3
Multiplica por .
Paso 2.11.2
Suma y .
Paso 2.11.3
La respuesta final es .
Paso 2.12
El valor de en es .
Paso 2.13
Grafica la parábola mediante sus propiedades y los puntos seleccionados.
Paso 3
Grafica la parábola mediante sus propiedades y los puntos seleccionados.
Dirección: abre hacia abajo
Vértice:
Foco:
Eje de simetría:
Directriz:
Paso 4