Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Para cualquier , las asíntotas verticales se producen en , donde es un número entero. Usa el período básico de , , a fin de obtener las asíntotas verticales de . Establece el interior de la función cotangente, , para que sea igual a a fin de obtener dónde se produce la asíntota vertical de .
Paso 1.2
Resuelve
Paso 1.2.1
Suma a ambos lados de la ecuación.
Paso 1.2.2
Divide cada término en por y simplifica.
Paso 1.2.2.1
Divide cada término en por .
Paso 1.2.2.2
Simplifica el lado izquierdo.
Paso 1.2.2.2.1
Cancela el factor común de .
Paso 1.2.2.2.1.1
Cancela el factor común.
Paso 1.2.2.2.1.2
Divide por .
Paso 1.3
Establece el interior de la función de la cotangente igual a .
Paso 1.4
Resuelve
Paso 1.4.1
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 1.4.1.1
Suma a ambos lados de la ecuación.
Paso 1.4.1.2
Suma y .
Paso 1.4.2
Divide cada término en por y simplifica.
Paso 1.4.2.1
Divide cada término en por .
Paso 1.4.2.2
Simplifica el lado izquierdo.
Paso 1.4.2.2.1
Cancela el factor común de .
Paso 1.4.2.2.1.1
Cancela el factor común.
Paso 1.4.2.2.1.2
Divide por .
Paso 1.4.2.3
Simplifica el lado derecho.
Paso 1.4.2.3.1
Cancela el factor común de y .
Paso 1.4.2.3.1.1
Factoriza de .
Paso 1.4.2.3.1.2
Cancela los factores comunes.
Paso 1.4.2.3.1.2.1
Factoriza de .
Paso 1.4.2.3.1.2.2
Cancela el factor común.
Paso 1.4.2.3.1.2.3
Reescribe la expresión.
Paso 1.4.2.3.1.2.4
Divide por .
Paso 1.5
El período básico de se producirá en , donde y son asíntotas verticales.
Paso 1.6
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 1.7
Las asíntotas verticales de se producen en , y en cada , donde es un número entero.
Paso 1.8
La cotangente solo tiene asíntotas verticales.
No hay asíntotas horizontales
No hay asíntotas oblicuas
Asíntotas verticales: donde es un número entero
No hay asíntotas horizontales
No hay asíntotas oblicuas
Asíntotas verticales: donde es un número entero
Paso 2
Usa la forma para obtener las variables utilizadas para obtener la amplitud, el período, el desfase y el desplazamiento vertical.
Paso 3
Como la gráfica de la función no tiene un valor máximo o mínimo, no puede haber un valor para la amplitud.
Amplitud: ninguna
Paso 4
Paso 4.1
Obtén el período de .
Paso 4.1.1
El período de la función puede calcularse mediante .
Paso 4.1.2
Reemplaza con en la fórmula para el período.
Paso 4.1.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 4.2
Obtén el período de .
Paso 4.2.1
El período de la función puede calcularse mediante .
Paso 4.2.2
Reemplaza con en la fórmula para el período.
Paso 4.2.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 4.3
El período de la suma/resta de las funciones trigonométricas es el máximo de los períodos individuales.
Paso 5
Paso 5.1
El desfase de la función puede calcularse a partir de .
Desfase:
Paso 5.2
Reemplaza los valores de y en la ecuación para el desfase.
Desfase:
Desfase:
Paso 6
Enumera las propiedades de la función trigonométrica.
Amplitud: ninguna
Período:
Desfase: ( a la derecha)
Desplazamiento vertical:
Paso 7
La función trigonométrica puede representarse de forma gráfica con la amplitud, el período, el desfase, el desplazamiento vertical y los puntos.
Asíntotas verticales: donde es un número entero
Amplitud: ninguna
Período:
Desfase: ( a la derecha)
Desplazamiento vertical:
Paso 8