Cálculo Ejemplos

Hallar los puntos críticos f(x)=x^3-6x^2-36x
Paso 1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1
Diferencia.
Toca para ver más pasos...
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2
Evalúa .
Toca para ver más pasos...
Paso 1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3
Multiplica por .
Paso 1.1.3
Evalúa .
Toca para ver más pasos...
Paso 1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.3
Multiplica por .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Factoriza el lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 2.2.1
Factoriza de .
Toca para ver más pasos...
Paso 2.2.1.1
Factoriza de .
Paso 2.2.1.2
Factoriza de .
Paso 2.2.1.3
Factoriza de .
Paso 2.2.1.4
Factoriza de .
Paso 2.2.1.5
Factoriza de .
Paso 2.2.2
Factoriza.
Toca para ver más pasos...
Paso 2.2.2.1
Factoriza con el método AC.
Toca para ver más pasos...
Paso 2.2.2.1.1
Considera la forma . Encuentra un par de números enteros cuyo producto sea y cuya suma sea . En este caso, cuyo producto es y cuya suma es .
Paso 2.2.2.1.2
Escribe la forma factorizada mediante estos números enteros.
Paso 2.2.2.2
Elimina los paréntesis innecesarios.
Paso 2.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.4.1
Establece igual a .
Paso 2.4.2
Suma a ambos lados de la ecuación.
Paso 2.5
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.5.1
Establece igual a .
Paso 2.5.2
Resta de ambos lados de la ecuación.
Paso 2.6
La solución final comprende todos los valores que hacen verdadera.
Paso 3
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 3.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 4
Evalúa en cada valor donde la derivada sea o indefinida.
Toca para ver más pasos...
Paso 4.1
Evalúa en .
Toca para ver más pasos...
Paso 4.1.1
Sustituye por .
Paso 4.1.2
Simplifica.
Toca para ver más pasos...
Paso 4.1.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.1.2.1.1
Eleva a la potencia de .
Paso 4.1.2.1.2
Eleva a la potencia de .
Paso 4.1.2.1.3
Multiplica por .
Paso 4.1.2.1.4
Multiplica por .
Paso 4.1.2.2
Simplifica mediante la resta de números.
Toca para ver más pasos...
Paso 4.1.2.2.1
Resta de .
Paso 4.1.2.2.2
Resta de .
Paso 4.2
Evalúa en .
Toca para ver más pasos...
Paso 4.2.1
Sustituye por .
Paso 4.2.2
Simplifica.
Toca para ver más pasos...
Paso 4.2.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.2.2.1.1
Eleva a la potencia de .
Paso 4.2.2.1.2
Eleva a la potencia de .
Paso 4.2.2.1.3
Multiplica por .
Paso 4.2.2.1.4
Multiplica por .
Paso 4.2.2.2
Simplifica mediante suma y resta.
Toca para ver más pasos...
Paso 4.2.2.2.1
Resta de .
Paso 4.2.2.2.2
Suma y .
Paso 4.3
Enumera todos los puntos.
Paso 5