Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Evalúa el límite del numerador y el límite del denominador.
Paso 1.1.1
Resta el límite del numerador y el límite del denominador.
Paso 1.1.2
Evalúa el límite del numerador.
Paso 1.1.2.1
Evalúa el límite.
Paso 1.1.2.1.1
Mueve el límite dentro de la función trigonométrica porque el seno es continuo.
Paso 1.1.2.1.2
Mueve el término fuera del límite porque es constante con respecto a .
Paso 1.1.2.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.1.2.3
Simplifica la respuesta.
Paso 1.1.2.3.1
Multiplica por .
Paso 1.1.2.3.2
El valor exacto de es .
Paso 1.1.3
Evalúa el límite del denominador.
Paso 1.1.3.1
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 1.1.3.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.1.3.3
Elevar a cualquier potencia positiva da como resultado .
Paso 1.1.3.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 1.3
Obtén la derivada del numerador y el denominador.
Paso 1.3.1
Diferencia el numerador y el denominador.
Paso 1.3.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.3.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.3.2.2
La derivada de con respecto a es .
Paso 1.3.2.3
Reemplaza todos los casos de con .
Paso 1.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.5
Multiplica por .
Paso 1.3.6
Mueve a la izquierda de .
Paso 1.3.7
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.4
Cancela el factor común de .
Paso 1.4.1
Cancela el factor común.
Paso 1.4.2
Reescribe la expresión.
Paso 2
Como la función se acerca a desde la izquierda y a desde la derecha, el límite no existe.