Cálculo Ejemplos

Hallar los máximos y mínimos locales f(x)=4-x^4y^4
Paso 1
Obtén la primera derivada de la función.
Toca para ver más pasos...
Paso 1.1
Diferencia.
Toca para ver más pasos...
Paso 1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2
Evalúa .
Toca para ver más pasos...
Paso 1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3
Multiplica por .
Paso 1.3
Resta de .
Paso 2
Obtén la segunda derivada de la función.
Toca para ver más pasos...
Paso 2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3
Multiplica por .
Paso 3
Para obtener los valores mínimo y máximo locales de la función, establece la derivada igual a y resuelve.
Paso 4
Obtén la primera derivada.
Toca para ver más pasos...
Paso 4.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 4.1.1
Diferencia.
Toca para ver más pasos...
Paso 4.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.2
Evalúa .
Toca para ver más pasos...
Paso 4.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.2.3
Multiplica por .
Paso 4.1.3
Resta de .
Paso 4.2
La primera derivada de con respecto a es .
Paso 5
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 5.1
Establece la primera derivada igual a .
Paso 5.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 5.2.1
Divide cada término en por .
Paso 5.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 5.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 5.2.2.1.1
Cancela el factor común.
Paso 5.2.2.1.2
Reescribe la expresión.
Paso 5.2.2.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 5.2.2.2.1
Cancela el factor común.
Paso 5.2.2.2.2
Divide por .
Paso 5.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 5.2.3.1
Cancela el factor común de y .
Toca para ver más pasos...
Paso 5.2.3.1.1
Factoriza de .
Paso 5.2.3.1.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 5.2.3.1.2.1
Factoriza de .
Paso 5.2.3.1.2.2
Cancela el factor común.
Paso 5.2.3.1.2.3
Reescribe la expresión.
Paso 5.2.3.2
Divide por .
Paso 5.3
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 5.4
Simplifica .
Toca para ver más pasos...
Paso 5.4.1
Reescribe como .
Paso 5.4.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales.
Paso 6
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 6.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 7
Puntos críticos para evaluar.
Paso 8
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 9
Evalúa la segunda derivada.
Toca para ver más pasos...
Paso 9.1
Elevar a cualquier potencia positiva da como resultado .
Paso 9.2
Multiplica .
Toca para ver más pasos...
Paso 9.2.1
Multiplica por .
Paso 9.2.2
Multiplica por .
Paso 10
Como la prueba de la primera derivada falló, no hay extremos locales.
No hay extremos locales
Paso 11