Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 1.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.2.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 1.2.3
Reemplaza todos los casos de con .
Paso 1.3
Diferencia.
Paso 1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.3
Simplifica la expresión.
Paso 1.3.3.1
Multiplica por .
Paso 1.3.3.2
Mueve a la izquierda de .
Paso 1.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.4
Simplifica.
Paso 1.4.1
Reordena los términos.
Paso 1.4.2
Reordena los factores en .
Paso 2
Paso 2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2
Evalúa .
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 2.2.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.2.3.1
Para aplicar la regla de la cadena, establece como .
Paso 2.2.3.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.2.3.3
Reemplaza todos los casos de con .
Paso 2.2.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.6
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.7
Multiplica por .
Paso 2.2.8
Mueve a la izquierda de .
Paso 2.3
Evalúa .
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 2.3.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.3.3.1
Para aplicar la regla de la cadena, establece como .
Paso 2.3.3.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.3.3.3
Reemplaza todos los casos de con .
Paso 2.3.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.6
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.7
Multiplica por .
Paso 2.3.8
Mueve a la izquierda de .
Paso 2.3.9
Multiplica por .
Paso 2.4
Simplifica.
Paso 2.4.1
Aplica la propiedad distributiva.
Paso 2.4.2
Aplica la propiedad distributiva.
Paso 2.4.3
Combina los términos.
Paso 2.4.3.1
Multiplica por .
Paso 2.4.3.2
Multiplica por .
Paso 2.4.3.3
Multiplica por .
Paso 2.4.3.4
Suma y .
Paso 2.4.3.4.1
Mueve .
Paso 2.4.3.4.2
Suma y .
Paso 2.4.4
Reordena los términos.
Paso 2.4.5
Reordena los factores en .
Paso 3
Para obtener los valores mínimo y máximo locales de la función, establece la derivada igual a y resuelve.
Paso 4
Paso 4.1
Obtén la primera derivada.
Paso 4.1.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 4.1.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 4.1.2.1
Para aplicar la regla de la cadena, establece como .
Paso 4.1.2.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 4.1.2.3
Reemplaza todos los casos de con .
Paso 4.1.3
Diferencia.
Paso 4.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.3.3
Simplifica la expresión.
Paso 4.1.3.3.1
Multiplica por .
Paso 4.1.3.3.2
Mueve a la izquierda de .
Paso 4.1.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.4
Simplifica.
Paso 4.1.4.1
Reordena los términos.
Paso 4.1.4.2
Reordena los factores en .
Paso 4.2
La primera derivada de con respecto a es .
Paso 5
Paso 5.1
Establece la primera derivada igual a .
Paso 5.2
Factoriza de .
Paso 5.2.1
Factoriza de .
Paso 5.2.2
Factoriza de .
Paso 5.2.3
Factoriza de .
Paso 5.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 5.4
Establece igual a .
Paso 5.5
Establece igual a y resuelve .
Paso 5.5.1
Establece igual a .
Paso 5.5.2
Resuelve en .
Paso 5.5.2.1
Resta el logaritmo natural de ambos lados de la ecuación para eliminar la variable del exponente.
Paso 5.5.2.2
La ecuación no puede resolverse porque es indefinida.
Indefinida
Paso 5.5.2.3
No hay soluciones para
No hay solución
No hay solución
No hay solución
Paso 5.6
Establece igual a y resuelve .
Paso 5.6.1
Establece igual a .
Paso 5.6.2
Resuelve en .
Paso 5.6.2.1
Resta de ambos lados de la ecuación.
Paso 5.6.2.2
Divide cada término en por y simplifica.
Paso 5.6.2.2.1
Divide cada término en por .
Paso 5.6.2.2.2
Simplifica el lado izquierdo.
Paso 5.6.2.2.2.1
Cancela el factor común de .
Paso 5.6.2.2.2.1.1
Cancela el factor común.
Paso 5.6.2.2.2.1.2
Divide por .
Paso 5.6.2.2.3
Simplifica el lado derecho.
Paso 5.6.2.2.3.1
Mueve el negativo al frente de la fracción.
Paso 5.7
La solución final comprende todos los valores que hacen verdadera.
Paso 6
Paso 6.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 7
Puntos críticos para evaluar.
Paso 8
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 9
Paso 9.1
Simplifica cada término.
Paso 9.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 9.1.2
Multiplica por .
Paso 9.1.3
Multiplica por .
Paso 9.1.4
Cualquier valor elevado a es .
Paso 9.1.5
Multiplica por .
Paso 9.1.6
Multiplica por .
Paso 9.1.7
Multiplica por .
Paso 9.1.8
Cualquier valor elevado a es .
Paso 9.1.9
Multiplica por .
Paso 9.1.10
Multiplica por .
Paso 9.1.11
Cualquier valor elevado a es .
Paso 9.1.12
Multiplica por .
Paso 9.2
Simplifica mediante la adición de números.
Paso 9.2.1
Suma y .
Paso 9.2.2
Suma y .
Paso 10
es un mínimo local porque el valor de la segunda derivada es positivo. Esto se conoce como prueba de la segunda derivada.
es un mínimo local
Paso 11
Paso 11.1
Reemplaza la variable con en la expresión.
Paso 11.2
Simplifica el resultado.
Paso 11.2.1
Elevar a cualquier potencia positiva da como resultado .
Paso 11.2.2
Multiplica por .
Paso 11.2.3
Cualquier valor elevado a es .
Paso 11.2.4
Multiplica por .
Paso 11.2.5
La respuesta final es .
Paso 12
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 13
Paso 13.1
Simplifica cada término.
Paso 13.1.1
Usa la regla de la potencia para distribuir el exponente.
Paso 13.1.1.1
Aplica la regla del producto a .
Paso 13.1.1.2
Aplica la regla del producto a .
Paso 13.1.2
Eleva a la potencia de .
Paso 13.1.3
Multiplica por .
Paso 13.1.4
Eleva a la potencia de .
Paso 13.1.5
Eleva a la potencia de .
Paso 13.1.6
Cancela el factor común de .
Paso 13.1.6.1
Cancela el factor común.
Paso 13.1.6.2
Reescribe la expresión.
Paso 13.1.7
Cancela el factor común de .
Paso 13.1.7.1
Mueve el signo menos inicial en al numerador.
Paso 13.1.7.2
Cancela el factor común.
Paso 13.1.7.3
Reescribe la expresión.
Paso 13.1.8
Reescribe la expresión mediante la regla del exponente negativo .
Paso 13.1.9
Combina y .
Paso 13.1.10
Cancela el factor común de .
Paso 13.1.10.1
Mueve el signo menos inicial en al numerador.
Paso 13.1.10.2
Factoriza de .
Paso 13.1.10.3
Cancela el factor común.
Paso 13.1.10.4
Reescribe la expresión.
Paso 13.1.11
Multiplica por .
Paso 13.1.12
Cancela el factor común de .
Paso 13.1.12.1
Mueve el signo menos inicial en al numerador.
Paso 13.1.12.2
Cancela el factor común.
Paso 13.1.12.3
Reescribe la expresión.
Paso 13.1.13
Reescribe la expresión mediante la regla del exponente negativo .
Paso 13.1.14
Combina y .
Paso 13.1.15
Mueve el negativo al frente de la fracción.
Paso 13.1.16
Cancela el factor común de .
Paso 13.1.16.1
Mueve el signo menos inicial en al numerador.
Paso 13.1.16.2
Cancela el factor común.
Paso 13.1.16.3
Reescribe la expresión.
Paso 13.1.17
Reescribe la expresión mediante la regla del exponente negativo .
Paso 13.1.18
Combina y .
Paso 13.2
Combina fracciones.
Paso 13.2.1
Combina los numeradores sobre el denominador común.
Paso 13.2.2
Simplifica la expresión.
Paso 13.2.2.1
Resta de .
Paso 13.2.2.2
Suma y .
Paso 13.2.2.3
Mueve el negativo al frente de la fracción.
Paso 14
es un máximo local porque el valor de la segunda derivada es negativo. Esto se conoce como prueba de la segunda derivada
es un máximo local
Paso 15
Paso 15.1
Reemplaza la variable con en la expresión.
Paso 15.2
Simplifica el resultado.
Paso 15.2.1
Usa la regla de la potencia para distribuir el exponente.
Paso 15.2.1.1
Aplica la regla del producto a .
Paso 15.2.1.2
Aplica la regla del producto a .
Paso 15.2.2
Simplifica la expresión.
Paso 15.2.2.1
Eleva a la potencia de .
Paso 15.2.2.2
Multiplica por .
Paso 15.2.2.3
Eleva a la potencia de .
Paso 15.2.2.4
Eleva a la potencia de .
Paso 15.2.3
Cancela el factor común de .
Paso 15.2.3.1
Mueve el signo menos inicial en al numerador.
Paso 15.2.3.2
Cancela el factor común.
Paso 15.2.3.3
Reescribe la expresión.
Paso 15.2.4
Reescribe la expresión mediante la regla del exponente negativo .
Paso 15.2.5
Combinar.
Paso 15.2.6
Multiplica por .
Paso 15.2.7
La respuesta final es .
Paso 16
Estos son los extremos locales de .
es un mínimo local
es un máximo local
Paso 17