Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2
Evalúa .
Paso 1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 1.2.3
Diferencia con la regla exponencial, que establece que es donde = .
Paso 1.2.4
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.6
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.7
Suma y .
Paso 1.2.8
Multiplica por .
Paso 1.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.4
Simplifica.
Paso 1.4.1
Aplica la propiedad distributiva.
Paso 1.4.2
Aplica la propiedad distributiva.
Paso 1.4.3
Combina los términos.
Paso 1.4.3.1
Multiplica por .
Paso 1.4.3.2
Resta de .
Paso 1.4.3.3
Suma y .
Paso 1.4.4
Reordena los términos.
Paso 1.4.5
Reordena los factores en .
Paso 2
Paso 2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2
Evalúa .
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 2.2.3
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.2.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.5
Multiplica por .
Paso 2.3
Evalúa .
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.4
Simplifica.
Paso 2.4.1
Aplica la propiedad distributiva.
Paso 2.4.2
Suma y .
Paso 2.4.3
Reordena los términos.
Paso 2.4.4
Reordena los factores en .
Paso 3
Para obtener los valores mínimo y máximo locales de la función, establece la derivada igual a y resuelve.
Paso 4
Paso 4.1
Obtén la primera derivada.
Paso 4.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.2
Evalúa .
Paso 4.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.2.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 4.1.2.3
Diferencia con la regla exponencial, que establece que es donde = .
Paso 4.1.2.4
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.2.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.2.6
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.2.7
Suma y .
Paso 4.1.2.8
Multiplica por .
Paso 4.1.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.4
Simplifica.
Paso 4.1.4.1
Aplica la propiedad distributiva.
Paso 4.1.4.2
Aplica la propiedad distributiva.
Paso 4.1.4.3
Combina los términos.
Paso 4.1.4.3.1
Multiplica por .
Paso 4.1.4.3.2
Resta de .
Paso 4.1.4.3.3
Suma y .
Paso 4.1.4.4
Reordena los términos.
Paso 4.1.4.5
Reordena los factores en .
Paso 4.2
La primera derivada de con respecto a es .
Paso 5
Paso 5.1
Establece la primera derivada igual a .
Paso 5.2
Factoriza de .
Paso 5.2.1
Factoriza de .
Paso 5.2.2
Factoriza de .
Paso 5.2.3
Factoriza de .
Paso 5.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 5.4
Establece igual a y resuelve .
Paso 5.4.1
Establece igual a .
Paso 5.4.2
Resuelve en .
Paso 5.4.2.1
Resta el logaritmo natural de ambos lados de la ecuación para eliminar la variable del exponente.
Paso 5.4.2.2
La ecuación no puede resolverse porque es indefinida.
Indefinida
Paso 5.4.2.3
No hay soluciones para
No hay solución
No hay solución
No hay solución
Paso 5.5
Establece igual a y resuelve .
Paso 5.5.1
Establece igual a .
Paso 5.5.2
Resuelve en .
Paso 5.5.2.1
Resta de ambos lados de la ecuación.
Paso 5.5.2.2
Divide cada término en por y simplifica.
Paso 5.5.2.2.1
Divide cada término en por .
Paso 5.5.2.2.2
Simplifica el lado izquierdo.
Paso 5.5.2.2.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 5.5.2.2.2.2
Divide por .
Paso 5.5.2.2.3
Simplifica el lado derecho.
Paso 5.5.2.2.3.1
Divide por .
Paso 5.6
La solución final comprende todos los valores que hacen verdadera.
Paso 6
Paso 6.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 7
Puntos críticos para evaluar.
Paso 8
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 9
Suma y .
Paso 10
es un máximo local porque el valor de la segunda derivada es negativo. Esto se conoce como prueba de la segunda derivada
es un máximo local
Paso 11
Paso 11.1
Reemplaza la variable con en la expresión.
Paso 11.2
Simplifica el resultado.
Paso 11.2.1
Simplifica cada término.
Paso 11.2.1.1
Resta de .
Paso 11.2.1.2
Multiplica por .
Paso 11.2.1.3
Multiplica por .
Paso 11.2.2
La respuesta final es .
Paso 12
Estos son los extremos locales de .
es un máximo local
Paso 13