Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Diferencia.
Paso 1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2
Evalúa .
Paso 1.2.1
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.2.1.1
Para aplicar la regla de la cadena, establece como .
Paso 1.2.1.2
La derivada de con respecto a es .
Paso 1.2.1.3
Reemplaza todos los casos de con .
Paso 1.2.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.4
Multiplica por .
Paso 1.2.5
Multiplica por .
Paso 2
Paso 2.1
Diferencia.
Paso 2.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2
Evalúa .
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.2.2.1
Para aplicar la regla de la cadena, establece como .
Paso 2.2.2.2
La derivada de con respecto a es .
Paso 2.2.2.3
Reemplaza todos los casos de con .
Paso 2.2.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.5
Multiplica por .
Paso 2.2.6
Mueve a la izquierda de .
Paso 2.2.7
Multiplica por .
Paso 2.3
Resta de .
Paso 3
Para obtener los valores mínimo y máximo locales de la función, establece la derivada igual a y resuelve.
Paso 4
Resta de ambos lados de la ecuación.
Paso 5
Paso 5.1
Divide cada término en por .
Paso 5.2
Simplifica el lado izquierdo.
Paso 5.2.1
Cancela el factor común de .
Paso 5.2.1.1
Cancela el factor común.
Paso 5.2.1.2
Divide por .
Paso 5.3
Simplifica el lado derecho.
Paso 5.3.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 6
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
Paso 7
Paso 7.1
El valor exacto de es .
Paso 8
Paso 8.1
Divide cada término en por .
Paso 8.2
Simplifica el lado izquierdo.
Paso 8.2.1
Cancela el factor común de .
Paso 8.2.1.1
Cancela el factor común.
Paso 8.2.1.2
Divide por .
Paso 8.3
Simplifica el lado derecho.
Paso 8.3.1
Multiplica el numerador por la recíproca del denominador.
Paso 8.3.2
Multiplica .
Paso 8.3.2.1
Multiplica por .
Paso 8.3.2.2
Multiplica por .
Paso 9
La función seno es positiva en el primer y el segundo cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el segundo cuadrante.
Paso 10
Paso 10.1
Simplifica.
Paso 10.1.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 10.1.2
Combina y .
Paso 10.1.3
Combina los numeradores sobre el denominador común.
Paso 10.1.4
Resta de .
Paso 10.1.4.1
Reordena y .
Paso 10.1.4.2
Resta de .
Paso 10.2
Divide cada término en por y simplifica.
Paso 10.2.1
Divide cada término en por .
Paso 10.2.2
Simplifica el lado izquierdo.
Paso 10.2.2.1
Cancela el factor común de .
Paso 10.2.2.1.1
Cancela el factor común.
Paso 10.2.2.1.2
Divide por .
Paso 10.2.3
Simplifica el lado derecho.
Paso 10.2.3.1
Multiplica el numerador por la recíproca del denominador.
Paso 10.2.3.2
Multiplica .
Paso 10.2.3.2.1
Multiplica por .
Paso 10.2.3.2.2
Multiplica por .
Paso 11
La solución a la ecuación .
Paso 12
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 13
Paso 13.1
Cancela el factor común de .
Paso 13.1.1
Factoriza de .
Paso 13.1.2
Cancela el factor común.
Paso 13.1.3
Reescribe la expresión.
Paso 13.2
El valor exacto de es .
Paso 13.3
Cancela el factor común de .
Paso 13.3.1
Factoriza de .
Paso 13.3.2
Cancela el factor común.
Paso 13.3.3
Reescribe la expresión.
Paso 14
es un máximo local porque el valor de la segunda derivada es negativo. Esto se conoce como prueba de la segunda derivada
es un máximo local
Paso 15
Paso 15.1
Reemplaza la variable con en la expresión.
Paso 15.2
Simplifica el resultado.
Paso 15.2.1
Simplifica cada término.
Paso 15.2.1.1
Cancela el factor común de .
Paso 15.2.1.1.1
Factoriza de .
Paso 15.2.1.1.2
Cancela el factor común.
Paso 15.2.1.1.3
Reescribe la expresión.
Paso 15.2.1.2
El valor exacto de es .
Paso 15.2.2
La respuesta final es .
Paso 16
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 17
Paso 17.1
Cancela el factor común de .
Paso 17.1.1
Factoriza de .
Paso 17.1.2
Cancela el factor común.
Paso 17.1.3
Reescribe la expresión.
Paso 17.2
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante. Haz que la expresión sea negativa porque el coseno es negativo en el segundo cuadrante.
Paso 17.3
El valor exacto de es .
Paso 17.4
Cancela el factor común de .
Paso 17.4.1
Mueve el signo menos inicial en al numerador.
Paso 17.4.2
Factoriza de .
Paso 17.4.3
Cancela el factor común.
Paso 17.4.4
Reescribe la expresión.
Paso 17.5
Multiplica por .
Paso 18
es un mínimo local porque el valor de la segunda derivada es positivo. Esto se conoce como prueba de la segunda derivada.
es un mínimo local
Paso 19
Paso 19.1
Reemplaza la variable con en la expresión.
Paso 19.2
Simplifica el resultado.
Paso 19.2.1
Simplifica cada término.
Paso 19.2.1.1
Cancela el factor común de .
Paso 19.2.1.1.1
Factoriza de .
Paso 19.2.1.1.2
Cancela el factor común.
Paso 19.2.1.1.3
Reescribe la expresión.
Paso 19.2.1.2
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante. Haz que la expresión sea negativa porque el coseno es negativo en el segundo cuadrante.
Paso 19.2.1.3
El valor exacto de es .
Paso 19.2.2
La respuesta final es .
Paso 20
Estos son los extremos locales de .
es un máximo local
es un mínimo local
Paso 21