Cálculo Ejemplos

Hallar los máximos y mínimos locales f(x)=ax^4+bx^3+cx^2+dx+e
Paso 1
Obtén la primera derivada de la función.
Toca para ver más pasos...
Paso 1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2
Evalúa .
Toca para ver más pasos...
Paso 1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3
Mueve a la izquierda de .
Paso 1.3
Evalúa .
Toca para ver más pasos...
Paso 1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.3
Mueve a la izquierda de .
Paso 1.4
Evalúa .
Toca para ver más pasos...
Paso 1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.4.3
Mueve a la izquierda de .
Paso 1.5
Evalúa .
Toca para ver más pasos...
Paso 1.5.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.5.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.5.3
Multiplica por .
Paso 1.6
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.7
Simplifica.
Toca para ver más pasos...
Paso 1.7.1
Suma y .
Paso 1.7.2
Reordena los términos.
Paso 2
Obtén la segunda derivada de la función.
Toca para ver más pasos...
Paso 2.1
Diferencia.
Toca para ver más pasos...
Paso 2.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2
Evalúa .
Toca para ver más pasos...
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3
Multiplica por .
Paso 2.3
Evalúa .
Toca para ver más pasos...
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.3
Multiplica por .
Paso 2.4
Evalúa .
Toca para ver más pasos...
Paso 2.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.4.3
Multiplica por .
Paso 2.5
Simplifica.
Toca para ver más pasos...
Paso 2.5.1
Suma y .
Paso 2.5.2
Reordena los términos.
Paso 3
Para obtener los valores mínimo y máximo locales de la función, establece la derivada igual a y resuelve.
Paso 4
Obtén la primera derivada.
Toca para ver más pasos...
Paso 4.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 4.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.2
Evalúa .
Toca para ver más pasos...
Paso 4.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.2.3
Multiplica por .
Paso 4.1.3
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 4.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.3.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.3.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.4
Combina los términos.
Toca para ver más pasos...
Paso 4.1.4.1
Suma y .
Paso 4.1.4.2
Suma y .
Paso 4.1.4.3
Suma y .
Paso 4.1.4.4
Suma y .
Paso 4.2
La primera derivada de con respecto a es .
Paso 5
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 5.1
Establece la primera derivada igual a .
Paso 5.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 5.3
Simplifica .
Toca para ver más pasos...
Paso 5.3.1
Reescribe como .
Paso 5.3.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 5.3.3
Más o menos es .
Paso 6
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 6.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 7
Puntos críticos para evaluar.
Paso 8
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 9
Evalúa la segunda derivada.
Toca para ver más pasos...
Paso 9.1
Simplifica cada término.
Toca para ver más pasos...
Paso 9.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 9.1.2
Multiplica por .
Paso 9.1.3
Multiplica por .
Paso 9.1.4
Multiplica .
Toca para ver más pasos...
Paso 9.1.4.1
Multiplica por .
Paso 9.1.4.2
Multiplica por .
Paso 9.2
Combina los términos opuestos en .
Toca para ver más pasos...
Paso 9.2.1
Suma y .
Paso 9.2.2
Suma y .
Paso 10
Como la prueba de la primera derivada falló, no hay extremos locales.
No hay extremos locales
Paso 11