Ingresa un problema...
Cálculo Ejemplos
Paso 1
La función puede obtenerse mediante el cálculo de la integral indefinida de la derivada .
Paso 2
Establece la integral para resolver.
Paso 3
Divide la única integral en varias integrales.
Paso 4
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 5
La integral de con respecto a es .
Paso 6
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 7
Paso 7.1
Usa para reescribir como .
Paso 7.2
Mueve fuera del denominador mediante su elevación a la potencia .
Paso 7.3
Multiplica los exponentes en .
Paso 7.3.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 7.3.2
Combina y .
Paso 7.3.3
Mueve el negativo al frente de la fracción.
Paso 8
Según la regla de la potencia, la integral de con respecto a es .
Paso 9
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 10
Paso 10.1
Mueve fuera del denominador mediante su elevación a la potencia .
Paso 10.2
Multiplica los exponentes en .
Paso 10.2.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 10.2.2
Multiplica por .
Paso 11
Según la regla de la potencia, la integral de con respecto a es .
Paso 12
Paso 12.1
Simplifica.
Paso 12.2
Multiplica por .
Paso 13
La respuesta es la antiderivada de la función .