Cálculo Ejemplos

Hallar la recta tangente horizontal f(x)=x-2sin(x)
Paso 1
Obtén la derivada.
Toca para ver más pasos...
Paso 1.1
Diferencia.
Toca para ver más pasos...
Paso 1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2
Evalúa .
Toca para ver más pasos...
Paso 1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2
La derivada de con respecto a es .
Paso 2
Establece la derivada igual a luego resuelve la ecuación .
Toca para ver más pasos...
Paso 2.1
Resta de ambos lados de la ecuación.
Paso 2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.2.1
Divide cada término en por .
Paso 2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.2.1.1
Cancela el factor común.
Paso 2.2.2.1.2
Divide por .
Paso 2.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.2.3.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 2.3
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Paso 2.4
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.4.1
El valor exacto de es .
Paso 2.5
La función coseno es positiva en el primer y el cuarto cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Paso 2.6
Simplifica .
Toca para ver más pasos...
Paso 2.6.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 2.6.2
Combina fracciones.
Toca para ver más pasos...
Paso 2.6.2.1
Combina y .
Paso 2.6.2.2
Combina los numeradores sobre el denominador común.
Paso 2.6.3
Simplifica el numerador.
Toca para ver más pasos...
Paso 2.6.3.1
Multiplica por .
Paso 2.6.3.2
Resta de .
Paso 2.7
Obtén el período de .
Toca para ver más pasos...
Paso 2.7.1
El período de la función puede calcularse mediante .
Paso 2.7.2
Reemplaza con en la fórmula para el período.
Paso 2.7.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 2.7.4
Divide por .
Paso 2.8
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Paso 3
Resuelve la función original en .
Toca para ver más pasos...
Paso 3.1
Reemplaza la variable con en la expresión.
Paso 3.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 3.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.2.1.1
El valor exacto de es .
Paso 3.2.1.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.1.2.1
Factoriza de .
Paso 3.2.1.2.2
Cancela el factor común.
Paso 3.2.1.2.3
Reescribe la expresión.
Paso 3.2.1.3
Reescribe como .
Paso 3.2.2
La respuesta final es .
Paso 4
Resuelve la función original en .
Toca para ver más pasos...
Paso 4.1
Reemplaza la variable con en la expresión.
Paso 4.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.2.1.1
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante. Haz que la expresión sea negativa porque el seno es negativo en el cuarto cuadrante.
Paso 4.2.1.2
El valor exacto de es .
Paso 4.2.1.3
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.2.1.3.1
Mueve el signo menos inicial en al numerador.
Paso 4.2.1.3.2
Factoriza de .
Paso 4.2.1.3.3
Cancela el factor común.
Paso 4.2.1.3.4
Reescribe la expresión.
Paso 4.2.1.4
Multiplica por .
Paso 4.2.1.5
Multiplica por .
Paso 4.2.2
La respuesta final es .
Paso 5
Las tangentes horizontales en la función son .
Paso 6