Ingresa un problema...
Cálculo Ejemplos
Paso 1
Mueve el término fuera del límite porque es constante con respecto a .
Paso 2
Paso 2.1
Evalúa el límite del numerador y el límite del denominador.
Paso 2.1.1
Resta el límite del numerador y el límite del denominador.
Paso 2.1.2
Evalúa el límite del numerador.
Paso 2.1.2.1
Mueve el límite dentro de la función trigonométrica porque el coseno es continuo.
Paso 2.1.2.2
Evalúa el límite de mediante el ingreso de para .
Paso 2.1.2.3
El valor exacto de es .
Paso 2.1.3
Evalúa el límite del denominador.
Paso 2.1.3.1
Move the limit inside the trig function because cotangent is continuous.
Paso 2.1.3.2
Evalúa el límite de mediante el ingreso de para .
Paso 2.1.3.3
El valor exacto de es .
Paso 2.1.3.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 2.1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 2.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 2.3
Obtén la derivada del numerador y el denominador.
Paso 2.3.1
Diferencia el numerador y el denominador.
Paso 2.3.2
La derivada de con respecto a es .
Paso 2.3.3
La derivada de con respecto a es .
Paso 2.4
La división de dos valores negativos da como resultado un valor positivo.
Paso 3
Paso 3.1
Divide el límite mediante la regla del cociente de límites en el límite en que se aproxima a .
Paso 3.2
Mueve el límite dentro de la función trigonométrica porque el seno es continuo.
Paso 3.3
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 3.4
Mueve el límite dentro de la función trigonométrica porque la cosecante es continua.
Paso 4
Paso 4.1
Evalúa el límite de mediante el ingreso de para .
Paso 4.2
Evalúa el límite de mediante el ingreso de para .
Paso 5
Paso 5.1
El valor exacto de es .
Paso 5.2
Simplifica el denominador.
Paso 5.2.1
El valor exacto de es .
Paso 5.2.2
Uno elevado a cualquier potencia es uno.
Paso 5.3
Cancela el factor común de .
Paso 5.3.1
Cancela el factor común.
Paso 5.3.2
Reescribe la expresión.
Paso 5.4
Multiplica por .