Cálculo Ejemplos

Evalúe el Límite limite a medida que x se aproxima a 0 de (6x^2)/(cos(x)-1)
Paso 1
Mueve el término fuera del límite porque es constante con respecto a .
Paso 2
Aplica la regla de l'Hôpital
Toca para ver más pasos...
Paso 2.1
Evalúa el límite del numerador y el límite del denominador.
Toca para ver más pasos...
Paso 2.1.1
Resta el límite del numerador y el límite del denominador.
Paso 2.1.2
Evalúa el límite del numerador.
Toca para ver más pasos...
Paso 2.1.2.1
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 2.1.2.2
Evalúa el límite de mediante el ingreso de para .
Paso 2.1.2.3
Elevar a cualquier potencia positiva da como resultado .
Paso 2.1.3
Evalúa el límite del denominador.
Toca para ver más pasos...
Paso 2.1.3.1
Evalúa el límite.
Toca para ver más pasos...
Paso 2.1.3.1.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 2.1.3.1.2
Mueve el límite dentro de la función trigonométrica porque el coseno es continuo.
Paso 2.1.3.1.3
Evalúa el límite de que es constante cuando se acerca a .
Paso 2.1.3.2
Evalúa el límite de mediante el ingreso de para .
Paso 2.1.3.3
Simplifica la respuesta.
Toca para ver más pasos...
Paso 2.1.3.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 2.1.3.3.1.1
El valor exacto de es .
Paso 2.1.3.3.1.2
Multiplica por .
Paso 2.1.3.3.2
Resta de .
Paso 2.1.3.3.3
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 2.1.3.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 2.1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 2.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 2.3
Obtén la derivada del numerador y el denominador.
Toca para ver más pasos...
Paso 2.3.1
Diferencia el numerador y el denominador.
Paso 2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.3
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.3.4
La derivada de con respecto a es .
Paso 2.3.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.6
Suma y .
Paso 3
Mueve el término fuera del límite porque es constante con respecto a .
Paso 4
Aplica la regla de l'Hôpital
Toca para ver más pasos...
Paso 4.1
Evalúa el límite del numerador y el límite del denominador.
Toca para ver más pasos...
Paso 4.1.1
Resta el límite del numerador y el límite del denominador.
Paso 4.1.2
Evalúa el límite de mediante el ingreso de para .
Paso 4.1.3
Evalúa el límite del denominador.
Toca para ver más pasos...
Paso 4.1.3.1
Evalúa el límite.
Toca para ver más pasos...
Paso 4.1.3.1.1
Mueve el término fuera del límite porque es constante con respecto a .
Paso 4.1.3.1.2
Mueve el límite dentro de la función trigonométrica porque el seno es continuo.
Paso 4.1.3.2
Evalúa el límite de mediante el ingreso de para .
Paso 4.1.3.3
Simplifica la respuesta.
Toca para ver más pasos...
Paso 4.1.3.3.1
El valor exacto de es .
Paso 4.1.3.3.2
Multiplica por .
Paso 4.1.3.3.3
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 4.1.3.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 4.1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 4.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 4.3
Obtén la derivada del numerador y el denominador.
Toca para ver más pasos...
Paso 4.3.1
Diferencia el numerador y el denominador.
Paso 4.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.3.4
La derivada de con respecto a es .
Paso 4.4
Cancela el factor común de y .
Toca para ver más pasos...
Paso 4.4.1
Reescribe como .
Paso 4.4.2
Mueve el negativo al frente de la fracción.
Paso 5
Evalúa el límite.
Toca para ver más pasos...
Paso 5.1
Mueve el término fuera del límite porque es constante con respecto a .
Paso 5.2
Divide el límite mediante la regla del cociente de límites en el límite en que se aproxima a .
Paso 5.3
Evalúa el límite de que es constante cuando se acerca a .
Paso 5.4
Mueve el límite dentro de la función trigonométrica porque el coseno es continuo.
Paso 6
Evalúa el límite de mediante el ingreso de para .
Paso 7
Simplifica la respuesta.
Toca para ver más pasos...
Paso 7.1
Multiplica .
Toca para ver más pasos...
Paso 7.1.1
Multiplica por .
Paso 7.1.2
Multiplica por .
Paso 7.2
Convierte de a .
Paso 7.3
El valor exacto de es .
Paso 7.4
Multiplica por .