Cálculo Ejemplos

Evalúe el Límite límite a medida que x se aproxima a 1 de ( logaritmo natural de x)/(1-x)
Paso 1
Aplica la regla de l'Hôpital
Toca para ver más pasos...
Paso 1.1
Evalúa el límite del numerador y el límite del denominador.
Toca para ver más pasos...
Paso 1.1.1
Resta el límite del numerador y el límite del denominador.
Paso 1.1.2
Evalúa el límite del numerador.
Toca para ver más pasos...
Paso 1.1.2.1
Mueve el límite dentro del logaritmo.
Paso 1.1.2.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.1.2.3
El logaritmo natural de es .
Paso 1.1.3
Evalúa el límite del denominador.
Toca para ver más pasos...
Paso 1.1.3.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 1.1.3.2
Evalúa el límite de que es constante cuando se acerca a .
Paso 1.1.3.3
Simplifica la expresión.
Toca para ver más pasos...
Paso 1.1.3.3.1
Evalúa el límite de mediante el ingreso de para .
Paso 1.1.3.3.2
Resta de .
Paso 1.1.3.3.3
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.1.3.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 1.3
Obtén la derivada del numerador y el denominador.
Toca para ver más pasos...
Paso 1.3.1
Diferencia el numerador y el denominador.
Paso 1.3.2
La derivada de con respecto a es .
Paso 1.3.3
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.3.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.5
Evalúa .
Toca para ver más pasos...
Paso 1.3.5.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.5.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.5.3
Multiplica por .
Paso 1.3.6
Resta de .
Paso 1.4
Multiplica el numerador por la recíproca del denominador.
Paso 1.5
Multiplica por .
Paso 1.6
Cancela el factor común de y .
Toca para ver más pasos...
Paso 1.6.1
Reescribe como .
Paso 1.6.2
Mueve el negativo al frente de la fracción.
Paso 2
Evalúa el límite.
Toca para ver más pasos...
Paso 2.1
Mueve el término fuera del límite porque es constante con respecto a .
Paso 2.2
Divide el límite mediante la regla del cociente de límites en el límite en que se aproxima a .
Paso 2.3
Evalúa el límite de que es constante cuando se acerca a .
Paso 3
Evalúa el límite de mediante el ingreso de para .
Paso 4
Simplifica la respuesta.
Toca para ver más pasos...
Paso 4.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.1.1
Cancela el factor común.
Paso 4.1.2
Reescribe la expresión.
Paso 4.2
Multiplica por .