Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Evalúa el límite del numerador y el límite del denominador.
Paso 1.1.1
Resta el límite del numerador y el límite del denominador.
Paso 1.1.2
El límite al infinito de un polinomio con coeficiente principal positivo es infinito.
Paso 1.1.3
Como el exponente se acerca a , la cantidad se acerca a .
Paso 1.1.4
Infinito dividido por infinito es indefinido.
Indefinida
Paso 1.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 1.3
Obtén la derivada del numerador y el denominador.
Paso 1.3.1
Diferencia el numerador y el denominador.
Paso 1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.3
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2
Mueve el término fuera del límite porque es constante con respecto a .
Paso 3
Paso 3.1
Evalúa el límite del numerador y el límite del denominador.
Paso 3.1.1
Resta el límite del numerador y el límite del denominador.
Paso 3.1.2
El límite al infinito de un polinomio con coeficiente principal positivo es infinito.
Paso 3.1.3
Como el exponente se acerca a , la cantidad se acerca a .
Paso 3.1.4
Infinito dividido por infinito es indefinido.
Indefinida
Paso 3.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 3.3
Obtén la derivada del numerador y el denominador.
Paso 3.3.1
Diferencia el numerador y el denominador.
Paso 3.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.3.3
Diferencia con la regla exponencial, que establece que es donde = .
Paso 4
Mueve el término fuera del límite porque es constante con respecto a .
Paso 5
Paso 5.1
Evalúa el límite del numerador y el límite del denominador.
Paso 5.1.1
Resta el límite del numerador y el límite del denominador.
Paso 5.1.2
El límite al infinito de un polinomio con coeficiente principal positivo es infinito.
Paso 5.1.3
Como el exponente se acerca a , la cantidad se acerca a .
Paso 5.1.4
Infinito dividido por infinito es indefinido.
Indefinida
Paso 5.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 5.3
Obtén la derivada del numerador y el denominador.
Paso 5.3.1
Diferencia el numerador y el denominador.
Paso 5.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 5.3.3
Diferencia con la regla exponencial, que establece que es donde = .
Paso 6
Mueve el término fuera del límite porque es constante con respecto a .
Paso 7
Paso 7.1
Evalúa el límite del numerador y el límite del denominador.
Paso 7.1.1
Resta el límite del numerador y el límite del denominador.
Paso 7.1.2
El límite al infinito de un polinomio con coeficiente principal positivo es infinito.
Paso 7.1.3
Como el exponente se acerca a , la cantidad se acerca a .
Paso 7.1.4
Infinito dividido por infinito es indefinido.
Indefinida
Paso 7.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 7.3
Obtén la derivada del numerador y el denominador.
Paso 7.3.1
Diferencia el numerador y el denominador.
Paso 7.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 7.3.3
Diferencia con la regla exponencial, que establece que es donde = .
Paso 8
Mueve el término fuera del límite porque es constante con respecto a .
Paso 9
Paso 9.1
Evalúa el límite del numerador y el límite del denominador.
Paso 9.1.1
Resta el límite del numerador y el límite del denominador.
Paso 9.1.2
El límite al infinito de un polinomio con coeficiente principal positivo es infinito.
Paso 9.1.3
Como el exponente se acerca a , la cantidad se acerca a .
Paso 9.1.4
Infinito dividido por infinito es indefinido.
Indefinida
Paso 9.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 9.3
Obtén la derivada del numerador y el denominador.
Paso 9.3.1
Diferencia el numerador y el denominador.
Paso 9.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 9.3.3
Diferencia con la regla exponencial, que establece que es donde = .
Paso 10
Mueve el término fuera del límite porque es constante con respecto a .
Paso 11
Como su numerador se acerca a un número real mientras que su denominador no está acotado, la fracción se acerca a .
Paso 12
Paso 12.1
Multiplica .
Paso 12.1.1
Multiplica por .
Paso 12.1.2
Multiplica por .
Paso 12.1.3
Eleva a la potencia de .
Paso 12.1.4
Eleva a la potencia de .
Paso 12.1.5
Usa la regla de la potencia para combinar exponentes.
Paso 12.1.6
Suma y .
Paso 12.2
Combinar.
Paso 12.3
Combinar.
Paso 12.4
Combinar.
Paso 12.5
Simplifica el numerador.
Paso 12.5.1
Multiplica por .
Paso 12.5.2
Multiplica por .
Paso 12.5.3
Multiplica por .
Paso 12.6
Simplifica el denominador.
Paso 12.6.1
Eleva a la potencia de .
Paso 12.6.2
Usa la regla de la potencia para combinar exponentes.
Paso 12.6.3
Suma y .
Paso 12.6.4
Eleva a la potencia de .
Paso 12.6.5
Usa la regla de la potencia para combinar exponentes.
Paso 12.6.6
Suma y .
Paso 12.6.7
Multiplica por sumando los exponentes.
Paso 12.6.7.1
Multiplica por .
Paso 12.6.7.1.1
Eleva a la potencia de .
Paso 12.6.7.1.2
Usa la regla de la potencia para combinar exponentes.
Paso 12.6.7.2
Suma y .
Paso 12.7
Multiplica por .