Cálculo Ejemplos

Evalúe el Límite limite a medida que x se aproxima a 2 de (x^2-4x+4)/(sin(pix)^2)
Paso 1
Aplica la regla de l'Hôpital
Toca para ver más pasos...
Paso 1.1
Evalúa el límite del numerador y el límite del denominador.
Toca para ver más pasos...
Paso 1.1.1
Resta el límite del numerador y el límite del denominador.
Paso 1.1.2
Evalúa el límite del numerador.
Toca para ver más pasos...
Paso 1.1.2.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 1.1.2.2
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 1.1.2.3
Mueve el término fuera del límite porque es constante con respecto a .
Paso 1.1.2.4
Evalúa el límite de que es constante cuando se acerca a .
Paso 1.1.2.5
Evalúa los límites mediante el ingreso de para todos los casos de .
Toca para ver más pasos...
Paso 1.1.2.5.1
Evalúa el límite de mediante el ingreso de para .
Paso 1.1.2.5.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.1.2.6
Simplifica la respuesta.
Toca para ver más pasos...
Paso 1.1.2.6.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.1.2.6.1.1
Eleva a la potencia de .
Paso 1.1.2.6.1.2
Multiplica por .
Paso 1.1.2.6.2
Resta de .
Paso 1.1.2.6.3
Suma y .
Paso 1.1.3
Evalúa el límite del denominador.
Toca para ver más pasos...
Paso 1.1.3.1
Evalúa el límite.
Toca para ver más pasos...
Paso 1.1.3.1.1
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 1.1.3.1.2
Mueve el límite dentro de la función trigonométrica porque el seno es continuo.
Paso 1.1.3.1.3
Mueve el término fuera del límite porque es constante con respecto a .
Paso 1.1.3.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.1.3.3
Simplifica la respuesta.
Toca para ver más pasos...
Paso 1.1.3.3.1
Mueve a la izquierda de .
Paso 1.1.3.3.2
Resta las rotaciones completas de hasta que el ángulo sea mayor o igual que y menor que .
Paso 1.1.3.3.3
El valor exacto de es .
Paso 1.1.3.3.4
Elevar a cualquier potencia positiva da como resultado .
Paso 1.1.3.3.5
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.1.3.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 1.3
Obtén la derivada del numerador y el denominador.
Toca para ver más pasos...
Paso 1.3.1
Diferencia el numerador y el denominador.
Paso 1.3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.4
Evalúa .
Toca para ver más pasos...
Paso 1.3.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.4.3
Multiplica por .
Paso 1.3.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.6
Suma y .
Paso 1.3.7
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 1.3.7.1
Para aplicar la regla de la cadena, establece como .
Paso 1.3.7.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.7.3
Reemplaza todos los casos de con .
Paso 1.3.8
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 1.3.8.1
Para aplicar la regla de la cadena, establece como .
Paso 1.3.8.2
La derivada de con respecto a es .
Paso 1.3.8.3
Reemplaza todos los casos de con .
Paso 1.3.9
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.10
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.11
Multiplica por .
Paso 1.3.12
Simplifica.
Toca para ver más pasos...
Paso 1.3.12.1
Reordena los factores de .
Paso 1.3.12.2
Agrega paréntesis.
Paso 1.3.12.3
Reordena y .
Paso 1.3.12.4
Agrega paréntesis.
Paso 1.3.12.5
Reordena y .
Paso 1.3.12.6
Reordena y .
Paso 1.3.12.7
Aplica la razón del ángulo doble sinusoidal.
Paso 1.3.12.8
Reordena los factores en .
Paso 2
Mueve el término fuera del límite porque es constante con respecto a .
Paso 3
Aplica la regla de l'Hôpital
Toca para ver más pasos...
Paso 3.1
Evalúa el límite del numerador y el límite del denominador.
Toca para ver más pasos...
Paso 3.1.1
Resta el límite del numerador y el límite del denominador.
Paso 3.1.2
Evalúa el límite del numerador.
Toca para ver más pasos...
Paso 3.1.2.1
Evalúa el límite.
Toca para ver más pasos...
Paso 3.1.2.1.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 3.1.2.1.2
Mueve el término fuera del límite porque es constante con respecto a .
Paso 3.1.2.1.3
Evalúa el límite de que es constante cuando se acerca a .
Paso 3.1.2.2
Evalúa el límite de mediante el ingreso de para .
Paso 3.1.2.3
Simplifica la respuesta.
Toca para ver más pasos...
Paso 3.1.2.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.1.2.3.1.1
Multiplica por .
Paso 3.1.2.3.1.2
Multiplica por .
Paso 3.1.2.3.2
Resta de .
Paso 3.1.3
Evalúa el límite del denominador.
Toca para ver más pasos...
Paso 3.1.3.1
Evalúa el límite.
Toca para ver más pasos...
Paso 3.1.3.1.1
Mueve el límite dentro de la función trigonométrica porque el seno es continuo.
Paso 3.1.3.1.2
Mueve el término fuera del límite porque es constante con respecto a .
Paso 3.1.3.2
Evalúa el límite de mediante el ingreso de para .
Paso 3.1.3.3
Simplifica la respuesta.
Toca para ver más pasos...
Paso 3.1.3.3.1
Multiplica por .
Paso 3.1.3.3.2
Resta las rotaciones completas de hasta que el ángulo sea mayor o igual que y menor que .
Paso 3.1.3.3.3
El valor exacto de es .
Paso 3.1.3.3.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 3.1.3.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 3.1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 3.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 3.3
Obtén la derivada del numerador y el denominador.
Toca para ver más pasos...
Paso 3.3.1
Diferencia el numerador y el denominador.
Paso 3.3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.3.3
Evalúa .
Toca para ver más pasos...
Paso 3.3.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.3.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.3.3.3
Multiplica por .
Paso 3.3.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.3.5
Suma y .
Paso 3.3.6
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 3.3.6.1
Para aplicar la regla de la cadena, establece como .
Paso 3.3.6.2
La derivada de con respecto a es .
Paso 3.3.6.3
Reemplaza todos los casos de con .
Paso 3.3.7
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.3.8
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.3.9
Multiplica por .
Paso 3.3.10
Mueve a la izquierda de .
Paso 3.3.11
Reordena los factores de .
Paso 3.4
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.4.1
Cancela el factor común.
Paso 3.4.2
Reescribe la expresión.
Paso 4
Evalúa el límite.
Toca para ver más pasos...
Paso 4.1
Mueve el término fuera del límite porque es constante con respecto a .
Paso 4.2
Divide el límite mediante la regla del cociente de límites en el límite en que se aproxima a .
Paso 4.3
Evalúa el límite de que es constante cuando se acerca a .
Paso 4.4
Mueve el límite dentro de la función trigonométrica porque el coseno es continuo.
Paso 4.5
Mueve el término fuera del límite porque es constante con respecto a .
Paso 5
Evalúa el límite de mediante el ingreso de para .
Paso 6
Simplifica la respuesta.
Toca para ver más pasos...
Paso 6.1
Multiplica .
Toca para ver más pasos...
Paso 6.1.1
Multiplica por .
Paso 6.1.2
Eleva a la potencia de .
Paso 6.1.3
Eleva a la potencia de .
Paso 6.1.4
Usa la regla de la potencia para combinar exponentes.
Paso 6.1.5
Suma y .
Paso 6.2
Combinar.
Paso 6.3
Multiplica por .
Paso 6.4
Simplifica el denominador.
Toca para ver más pasos...
Paso 6.4.1
Multiplica por .
Paso 6.4.2
Resta las rotaciones completas de hasta que el ángulo sea mayor o igual que y menor que .
Paso 6.4.3
El valor exacto de es .
Paso 6.5
Multiplica por .
Paso 7
El resultado puede mostrarse de distintas formas.
Forma exacta:
Forma decimal: