Cálculo Ejemplos

Hallar la recta tangente en el punto y=36/(x^2+2) , (1,12)
,
Paso 1
Obtén la primera derivada y evalúa en y para obtener la pendiente de la recta tangente.
Toca para ver más pasos...
Paso 1.1
Diferencia con la regla del múltiplo constante.
Toca para ver más pasos...
Paso 1.1.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2
Reescribe como .
Paso 1.2
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 1.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3
Reemplaza todos los casos de con .
Paso 1.3
Diferencia.
Toca para ver más pasos...
Paso 1.3.1
Multiplica por .
Paso 1.3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.5
Simplifica la expresión.
Toca para ver más pasos...
Paso 1.3.5.1
Suma y .
Paso 1.3.5.2
Multiplica por .
Paso 1.4
Simplifica.
Toca para ver más pasos...
Paso 1.4.1
Reescribe la expresión mediante la regla del exponente negativo .
Paso 1.4.2
Combina los términos.
Toca para ver más pasos...
Paso 1.4.2.1
Combina y .
Paso 1.4.2.2
Mueve el negativo al frente de la fracción.
Paso 1.4.2.3
Combina y .
Paso 1.4.2.4
Mueve a la izquierda de .
Paso 1.5
Evalúa la derivada en .
Paso 1.6
Simplifica.
Toca para ver más pasos...
Paso 1.6.1
Multiplica por .
Paso 1.6.2
Simplifica el denominador.
Toca para ver más pasos...
Paso 1.6.2.1
Uno elevado a cualquier potencia es uno.
Paso 1.6.2.2
Suma y .
Paso 1.6.2.3
Eleva a la potencia de .
Paso 1.6.3
Simplifica la expresión.
Toca para ver más pasos...
Paso 1.6.3.1
Divide por .
Paso 1.6.3.2
Multiplica por .
Paso 2
Inserta los valores del punto y la pendiente en la fórmula de punto-pendiente y resuelve .
Toca para ver más pasos...
Paso 2.1
Usa la pendiente y un punto dado para sustituir y en la ecuación punto-pendiente , que deriva de la ecuación pendiente .
Paso 2.2
Simplifica la ecuación y mantenla en ecuación punto-pendiente.
Paso 2.3
Resuelve
Toca para ver más pasos...
Paso 2.3.1
Simplifica .
Toca para ver más pasos...
Paso 2.3.1.1
Reescribe.
Paso 2.3.1.2
Simplifica mediante la adición de ceros.
Paso 2.3.1.3
Aplica la propiedad distributiva.
Paso 2.3.1.4
Multiplica por .
Paso 2.3.2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 2.3.2.1
Suma a ambos lados de la ecuación.
Paso 2.3.2.2
Suma y .
Paso 3