Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Divide cada término en por .
Paso 1.2
Simplifica el lado izquierdo.
Paso 1.2.1
Cancela el factor común de .
Paso 1.2.1.1
Cancela el factor común.
Paso 1.2.1.2
Divide por .
Paso 1.3
Simplifica el lado derecho.
Paso 1.3.1
Divide por .
Paso 2
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Paso 3
Paso 3.1
El valor exacto de es .
Paso 4
Paso 4.1
Resta de ambos lados de la ecuación.
Paso 4.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 4.3
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Paso 4.3.1
Multiplica por .
Paso 4.3.2
Multiplica por .
Paso 4.4
Combina los numeradores sobre el denominador común.
Paso 4.5
Simplifica el numerador.
Paso 4.5.1
Mueve a la izquierda de .
Paso 4.5.2
Resta de .
Paso 5
La función coseno es positiva en el primer y el cuarto cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Paso 6
Paso 6.1
Simplifica .
Paso 6.1.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 6.1.2
Combina fracciones.
Paso 6.1.2.1
Combina y .
Paso 6.1.2.2
Combina los numeradores sobre el denominador común.
Paso 6.1.3
Simplifica el numerador.
Paso 6.1.3.1
Multiplica por .
Paso 6.1.3.2
Resta de .
Paso 6.2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 6.2.1
Resta de ambos lados de la ecuación.
Paso 6.2.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 6.2.3
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Paso 6.2.3.1
Multiplica por .
Paso 6.2.3.2
Multiplica por .
Paso 6.2.4
Combina los numeradores sobre el denominador común.
Paso 6.2.5
Simplifica el numerador.
Paso 6.2.5.1
Multiplica por .
Paso 6.2.5.2
Resta de .
Paso 7
Paso 7.1
El período de la función puede calcularse mediante .
Paso 7.2
Reemplaza con en la fórmula para el período.
Paso 7.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 7.4
Divide por .
Paso 8
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
Paso 9
Consolida las respuestas.
, para cualquier número entero