Ingresa un problema...
Cálculo Ejemplos
Paso 1
Diferencia con la regla del cociente, que establece que es donde y .
Paso 2
Paso 2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.5
Multiplica por .
Paso 2.6
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.7
Suma y .
Paso 2.8
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.9
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.10
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.11
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.12
Multiplica por .
Paso 2.13
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.14
Suma y .
Paso 3
Paso 3.1
Aplica la propiedad distributiva.
Paso 3.2
Simplifica el numerador.
Paso 3.2.1
Simplifica cada término.
Paso 3.2.1.1
Expande mediante la multiplicación de cada término de la primera expresión por cada término de la segunda expresión.
Paso 3.2.1.2
Simplifica cada término.
Paso 3.2.1.2.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.2.1.2.2
Multiplica por sumando los exponentes.
Paso 3.2.1.2.2.1
Mueve .
Paso 3.2.1.2.2.2
Multiplica por .
Paso 3.2.1.2.2.2.1
Eleva a la potencia de .
Paso 3.2.1.2.2.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 3.2.1.2.2.3
Suma y .
Paso 3.2.1.2.3
Mueve a la izquierda de .
Paso 3.2.1.2.4
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.2.1.2.5
Multiplica por sumando los exponentes.
Paso 3.2.1.2.5.1
Mueve .
Paso 3.2.1.2.5.2
Multiplica por .
Paso 3.2.1.2.6
Multiplica por .
Paso 3.2.1.2.7
Multiplica por .
Paso 3.2.1.2.8
Multiplica por .
Paso 3.2.1.2.9
Multiplica por .
Paso 3.2.1.3
Resta de .
Paso 3.2.1.4
Suma y .
Paso 3.2.1.5
Simplifica cada término.
Paso 3.2.1.5.1
Multiplica por .
Paso 3.2.1.5.2
Multiplica por .
Paso 3.2.1.6
Expande mediante la multiplicación de cada término de la primera expresión por cada término de la segunda expresión.
Paso 3.2.1.7
Simplifica cada término.
Paso 3.2.1.7.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.2.1.7.2
Multiplica por sumando los exponentes.
Paso 3.2.1.7.2.1
Mueve .
Paso 3.2.1.7.2.2
Multiplica por .
Paso 3.2.1.7.2.2.1
Eleva a la potencia de .
Paso 3.2.1.7.2.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 3.2.1.7.2.3
Suma y .
Paso 3.2.1.7.3
Multiplica por .
Paso 3.2.1.7.4
Multiplica por .
Paso 3.2.1.7.5
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.2.1.7.6
Multiplica por sumando los exponentes.
Paso 3.2.1.7.6.1
Mueve .
Paso 3.2.1.7.6.2
Multiplica por .
Paso 3.2.1.7.7
Multiplica por .
Paso 3.2.1.7.8
Multiplica por .
Paso 3.2.1.7.9
Multiplica por .
Paso 3.2.1.7.10
Multiplica por .
Paso 3.2.1.8
Resta de .
Paso 3.2.1.9
Resta de .
Paso 3.2.2
Combina los términos opuestos en .
Paso 3.2.2.1
Resta de .
Paso 3.2.2.2
Suma y .
Paso 3.2.2.3
Suma y .
Paso 3.2.2.4
Suma y .
Paso 3.2.3
Resta de .
Paso 3.2.4
Suma y .
Paso 3.3
Simplifica el numerador.
Paso 3.3.1
Factoriza de .
Paso 3.3.1.1
Factoriza de .
Paso 3.3.1.2
Factoriza de .
Paso 3.3.1.3
Factoriza de .
Paso 3.3.2
Reescribe como .
Paso 3.3.3
Reordena y .
Paso 3.3.4
Dado que ambos términos son cuadrados perfectos, factoriza con la fórmula de la diferencia de cuadrados, , donde y .
Paso 3.4
Simplifica el denominador.
Paso 3.4.1
Factoriza con la regla del cuadrado perfecto.
Paso 3.4.1.1
Reescribe como .
Paso 3.4.1.2
Comprueba que el término medio sea dos veces el producto de los números que se elevan al cuadrado en el primer término y el tercer término.
Paso 3.4.1.3
Reescribe el polinomio.
Paso 3.4.1.4
Factoriza con la regla del trinomio cuadrado perfecto , donde y .
Paso 3.4.2
Multiplica los exponentes en .
Paso 3.4.2.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.4.2.2
Multiplica por .
Paso 3.4.3
Usa el teorema del binomio.
Paso 3.4.4
Simplifica cada término.
Paso 3.4.4.1
Multiplica por .
Paso 3.4.4.2
Eleva a la potencia de .
Paso 3.4.4.3
Multiplica por .
Paso 3.4.4.4
Eleva a la potencia de .
Paso 3.4.4.5
Multiplica por .
Paso 3.4.4.6
Eleva a la potencia de .
Paso 3.4.5
Factoriza mediante el teorema del binomio.
Paso 3.5
Cancela el factor común de y .
Paso 3.5.1
Factoriza de .
Paso 3.5.2
Cancela los factores comunes.
Paso 3.5.2.1
Factoriza de .
Paso 3.5.2.2
Cancela el factor común.
Paso 3.5.2.3
Reescribe la expresión.