Ingresa un problema...
Cálculo Ejemplos
Paso 1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2
Paso 2.1
Para aplicar la regla de la cadena, establece como .
Paso 2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3
Reemplaza todos los casos de con .
Paso 3
Paso 3.1
Combina y .
Paso 3.2
Simplifica los términos.
Paso 3.2.1
Multiplica por .
Paso 3.2.2
Combina y .
Paso 3.2.3
Mueve a la izquierda de .
Paso 3.2.4
Cancela el factor común de y .
Paso 3.2.4.1
Factoriza de .
Paso 3.2.4.2
Cancela los factores comunes.
Paso 3.2.4.2.1
Factoriza de .
Paso 3.2.4.2.2
Cancela el factor común.
Paso 3.2.4.2.3
Reescribe la expresión.
Paso 3.2.4.2.4
Divide por .
Paso 3.3
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.6
Multiplica por .
Paso 3.7
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.8
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.9
Multiplica por .
Paso 3.10
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.11
Suma y .