Cálculo Ejemplos

أوجد المشتق - d/d@VAR f(x)=((3x-5)^3)/((2x^2+1)^4)
Paso 1
Diferencia con la regla del cociente, que establece que es donde y .
Paso 2
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 2.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.2
Multiplica por .
Paso 3
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 3.1
Para aplicar la regla de la cadena, establece como .
Paso 3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.3
Reemplaza todos los casos de con .
Paso 4
Diferencia.
Toca para ver más pasos...
Paso 4.1
Mueve a la izquierda de .
Paso 4.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.5
Multiplica por .
Paso 4.6
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.7
Simplifica la expresión.
Toca para ver más pasos...
Paso 4.7.1
Suma y .
Paso 4.7.2
Multiplica por .
Paso 5
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 5.1
Para aplicar la regla de la cadena, establece como .
Paso 5.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 5.3
Reemplaza todos los casos de con .
Paso 6
Diferencia.
Toca para ver más pasos...
Paso 6.1
Multiplica por .
Paso 6.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 6.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 6.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 6.5
Multiplica por .
Paso 6.6
Como es constante con respecto a , la derivada de con respecto a es .
Paso 6.7
Simplifica la expresión.
Toca para ver más pasos...
Paso 6.7.1
Suma y .
Paso 6.7.2
Mueve a la izquierda de .
Paso 6.7.3
Multiplica por .
Paso 7
Simplifica.
Toca para ver más pasos...
Paso 7.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 7.1.1
Factoriza de .
Toca para ver más pasos...
Paso 7.1.1.1
Factoriza de .
Paso 7.1.1.2
Factoriza de .
Paso 7.1.1.3
Factoriza de .
Paso 7.1.2
Aplica la propiedad distributiva.
Paso 7.1.3
Multiplica por .
Paso 7.1.4
Multiplica por .
Paso 7.1.5
Aplica la propiedad distributiva.
Paso 7.1.6
Multiplica por .
Paso 7.1.7
Multiplica por .
Paso 7.1.8
Aplica la propiedad distributiva.
Paso 7.1.9
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 7.1.9.1
Mueve .
Paso 7.1.9.2
Multiplica por .
Paso 7.1.10
Resta de .
Paso 7.1.11
Reordena los términos.
Paso 7.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 7.2.1
Factoriza de .
Paso 7.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 7.2.2.1
Factoriza de .
Paso 7.2.2.2
Cancela el factor común.
Paso 7.2.2.3
Reescribe la expresión.
Paso 7.3
Factoriza de .
Paso 7.4
Factoriza de .
Paso 7.5
Factoriza de .
Paso 7.6
Reescribe como .
Paso 7.7
Factoriza de .
Paso 7.8
Reescribe como .
Paso 7.9
Mueve el negativo al frente de la fracción.