Cálculo Ejemplos

Evaluar utilizando la regla de L'Hôpital limite a medida que x se aproxima a 0 de (e^(9x)-1-9x)/(x^2)
Paso 1
Evalúa el límite del numerador y el límite del denominador.
Toca para ver más pasos...
Paso 1.1
Resta el límite del numerador y el límite del denominador.
Paso 1.2
Evalúa el límite del numerador.
Toca para ver más pasos...
Paso 1.2.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 1.2.2
Mueve el límite dentro del exponente.
Paso 1.2.3
Mueve el término fuera del límite porque es constante con respecto a .
Paso 1.2.4
Evalúa el límite de que es constante cuando se acerca a .
Paso 1.2.5
Mueve el término fuera del límite porque es constante con respecto a .
Paso 1.2.6
Evalúa los límites mediante el ingreso de para todos los casos de .
Toca para ver más pasos...
Paso 1.2.6.1
Evalúa el límite de mediante el ingreso de para .
Paso 1.2.6.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.2.7
Simplifica la respuesta.
Toca para ver más pasos...
Paso 1.2.7.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.2.7.1.1
Multiplica por .
Paso 1.2.7.1.2
Cualquier valor elevado a es .
Paso 1.2.7.1.3
Multiplica por .
Paso 1.2.7.1.4
Multiplica por .
Paso 1.2.7.2
Resta de .
Paso 1.2.7.3
Suma y .
Paso 1.3
Evalúa el límite del denominador.
Toca para ver más pasos...
Paso 1.3.1
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 1.3.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.3.3
Elevar a cualquier potencia positiva da como resultado .
Paso 1.3.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 3
Obtén la derivada del numerador y el denominador.
Toca para ver más pasos...
Paso 3.1
Diferencia el numerador y el denominador.
Paso 3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.3
Evalúa .
Toca para ver más pasos...
Paso 3.3.1
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 3.3.1.1
Para aplicar la regla de la cadena, establece como .
Paso 3.3.1.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 3.3.1.3
Reemplaza todos los casos de con .
Paso 3.3.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.3.4
Multiplica por .
Paso 3.3.5
Mueve a la izquierda de .
Paso 3.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.5
Evalúa .
Toca para ver más pasos...
Paso 3.5.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.5.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.5.3
Multiplica por .
Paso 3.6
Suma y .
Paso 3.7
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4
Mueve el término fuera del límite porque es constante con respecto a .
Paso 5
Aplica la regla de l'Hôpital
Toca para ver más pasos...
Paso 5.1
Evalúa el límite del numerador y el límite del denominador.
Toca para ver más pasos...
Paso 5.1.1
Resta el límite del numerador y el límite del denominador.
Paso 5.1.2
Evalúa el límite del numerador.
Toca para ver más pasos...
Paso 5.1.2.1
Evalúa el límite.
Toca para ver más pasos...
Paso 5.1.2.1.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 5.1.2.1.2
Mueve el término fuera del límite porque es constante con respecto a .
Paso 5.1.2.1.3
Mueve el límite dentro del exponente.
Paso 5.1.2.1.4
Mueve el término fuera del límite porque es constante con respecto a .
Paso 5.1.2.1.5
Evalúa el límite de que es constante cuando se acerca a .
Paso 5.1.2.2
Evalúa el límite de mediante el ingreso de para .
Paso 5.1.2.3
Simplifica la respuesta.
Toca para ver más pasos...
Paso 5.1.2.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.1.2.3.1.1
Multiplica por .
Paso 5.1.2.3.1.2
Cualquier valor elevado a es .
Paso 5.1.2.3.1.3
Multiplica por .
Paso 5.1.2.3.1.4
Multiplica por .
Paso 5.1.2.3.2
Resta de .
Paso 5.1.3
Evalúa el límite de mediante el ingreso de para .
Paso 5.1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 5.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 5.3
Obtén la derivada del numerador y el denominador.
Toca para ver más pasos...
Paso 5.3.1
Diferencia el numerador y el denominador.
Paso 5.3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 5.3.3
Evalúa .
Toca para ver más pasos...
Paso 5.3.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 5.3.3.2
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 5.3.3.2.1
Para aplicar la regla de la cadena, establece como .
Paso 5.3.3.2.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 5.3.3.2.3
Reemplaza todos los casos de con .
Paso 5.3.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 5.3.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 5.3.3.5
Multiplica por .
Paso 5.3.3.6
Mueve a la izquierda de .
Paso 5.3.3.7
Multiplica por .
Paso 5.3.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 5.3.5
Suma y .
Paso 5.3.6
Diferencia con la regla de la potencia, que establece que es donde .
Paso 5.4
Divide por .
Paso 6
Evalúa el límite.
Toca para ver más pasos...
Paso 6.1
Mueve el término fuera del límite porque es constante con respecto a .
Paso 6.2
Mueve el límite dentro del exponente.
Paso 6.3
Mueve el término fuera del límite porque es constante con respecto a .
Paso 7
Evalúa el límite de mediante el ingreso de para .
Paso 8
Simplifica la respuesta.
Toca para ver más pasos...
Paso 8.1
Combina y .
Paso 8.2
Multiplica por .
Paso 8.3
Cualquier valor elevado a es .
Paso 8.4
Multiplica por .