Cálculo Ejemplos

Hallar dónde aumenta o desciende la función utilizando derivadas f(x)=4x^3-48x
Paso 1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2
Evalúa .
Toca para ver más pasos...
Paso 1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3
Multiplica por .
Paso 1.1.3
Evalúa .
Toca para ver más pasos...
Paso 1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.3
Multiplica por .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Suma a ambos lados de la ecuación.
Paso 2.3
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.3.1
Divide cada término en por .
Paso 2.3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.3.2.1.1
Cancela el factor común.
Paso 2.3.2.1.2
Divide por .
Paso 2.3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.3.3.1
Divide por .
Paso 2.4
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 2.5
Simplifica .
Toca para ver más pasos...
Paso 2.5.1
Reescribe como .
Paso 2.5.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 2.6
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 2.6.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 2.6.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 2.6.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 3
Los valores que hacen que la derivada sea igual a son .
Paso 4
Divide en intervalos separados alrededor de los valores de que hacen que la derivada sea o indefinida.
Paso 5
Sustituye un valor del intervalo en la derivada para determinar si la función está aumentando o disminuyendo.
Toca para ver más pasos...
Paso 5.1
Reemplaza la variable con en la expresión.
Paso 5.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 5.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.2.1.1
Eleva a la potencia de .
Paso 5.2.1.2
Multiplica por .
Paso 5.2.2
Resta de .
Paso 5.2.3
La respuesta final es .
Paso 5.3
En la derivada es . Dado que es positivo, la función aumenta en .
Incremento en ya que
Incremento en ya que
Paso 6
Sustituye un valor del intervalo en la derivada para determinar si la función está aumentando o disminuyendo.
Toca para ver más pasos...
Paso 6.1
Reemplaza la variable con en la expresión.
Paso 6.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 6.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 6.2.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 6.2.1.2
Multiplica por .
Paso 6.2.2
Resta de .
Paso 6.2.3
La respuesta final es .
Paso 6.3
En la derivada es . Dado que esto es negativo, la función está disminuyendo en .
Decrecimiento en desde
Decrecimiento en desde
Paso 7
Sustituye un valor del intervalo en la derivada para determinar si la función está aumentando o disminuyendo.
Toca para ver más pasos...
Paso 7.1
Reemplaza la variable con en la expresión.
Paso 7.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 7.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 7.2.1.1
Eleva a la potencia de .
Paso 7.2.1.2
Multiplica por .
Paso 7.2.2
Resta de .
Paso 7.2.3
La respuesta final es .
Paso 7.3
En la derivada es . Dado que es positivo, la función aumenta en .
Incremento en ya que
Incremento en ya que
Paso 8
Enumera los intervalos en los que la función aumenta y disminuye.
Incremento en:
Decrecimiento en:
Paso 9