Ingresa un problema...
Cálculo Ejemplos
Paso 1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 2
Paso 2.1
Resta de ambos lados de la ecuación.
Paso 2.2
Divide cada término en por y simplifica.
Paso 2.2.1
Divide cada término en por .
Paso 2.2.2
Simplifica el lado izquierdo.
Paso 2.2.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 2.2.2.2
Divide por .
Paso 2.2.3
Simplifica el lado derecho.
Paso 2.2.3.1
Divide por .
Paso 2.3
Resta el logaritmo natural de ambos lados de la ecuación para eliminar la variable del exponente.
Paso 2.4
Expande el lado izquierdo.
Paso 2.4.1
Expande ; para ello, mueve fuera del logaritmo.
Paso 2.4.2
El logaritmo natural de es .
Paso 2.4.3
Multiplica por .
Paso 2.5
Simplifica el lado derecho.
Paso 2.5.1
El logaritmo natural de es .
Paso 2.6
Resta de ambos lados de la ecuación.
Paso 2.7
Divide cada término en por y simplifica.
Paso 2.7.1
Divide cada término en por .
Paso 2.7.2
Simplifica el lado izquierdo.
Paso 2.7.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 2.7.2.2
Divide por .
Paso 2.7.3
Simplifica el lado derecho.
Paso 2.7.3.1
Divide por .
Paso 2.8
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 2.9
Simplifica .
Paso 2.9.1
Reescribe como .
Paso 2.9.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 2.10
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 2.10.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 2.10.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 2.10.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 3
El dominio son todos los valores de que hacen que la expresión sea definida.
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 4