Cálculo Ejemplos

Hallar la concavidad f(x)=x^3-6x^2+9x
Paso 1
Find the values where the second derivative is equal to .
Toca para ver más pasos...
Paso 1.1
Obtener la segunda derivada.
Toca para ver más pasos...
Paso 1.1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1.1
Diferencia.
Toca para ver más pasos...
Paso 1.1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.2
Evalúa .
Toca para ver más pasos...
Paso 1.1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.2.3
Multiplica por .
Paso 1.1.1.3
Evalúa .
Toca para ver más pasos...
Paso 1.1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.3.3
Multiplica por .
Paso 1.1.2
Obtener la segunda derivada.
Toca para ver más pasos...
Paso 1.1.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2.2
Evalúa .
Toca para ver más pasos...
Paso 1.1.2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.2.3
Multiplica por .
Paso 1.1.2.3
Evalúa .
Toca para ver más pasos...
Paso 1.1.2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3.3
Multiplica por .
Paso 1.1.2.4
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 1.1.2.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.4.2
Suma y .
Paso 1.1.3
La segunda derivada de con respecto a es .
Paso 1.2
Establece la segunda derivada igual a luego resuelve la ecuación .
Toca para ver más pasos...
Paso 1.2.1
Establece la segunda derivada igual a .
Paso 1.2.2
Suma a ambos lados de la ecuación.
Paso 1.2.3
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 1.2.3.1
Divide cada término en por .
Paso 1.2.3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 1.2.3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.2.3.2.1.1
Cancela el factor común.
Paso 1.2.3.2.1.2
Divide por .
Paso 1.2.3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.2.3.3.1
Divide por .
Paso 2
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 3
Crea intervalos alrededor de los valores de donde la segunda derivada es cero o indefinida.
Paso 4
Sustituye cualquier número del intervalo en la segunda derivada y evalúa para determinar la concavidad.
Toca para ver más pasos...
Paso 4.1
Reemplaza la variable con en la expresión.
Paso 4.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 4.2.1
Multiplica por .
Paso 4.2.2
Resta de .
Paso 4.2.3
La respuesta final es .
Paso 4.3
La gráfica es cóncava en el intervalo porque es negativa.
Cóncavo en dado que es negativo
Cóncavo en dado que es negativo
Paso 5
Sustituye cualquier número del intervalo en la segunda derivada y evalúa para determinar la concavidad.
Toca para ver más pasos...
Paso 5.1
Reemplaza la variable con en la expresión.
Paso 5.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 5.2.1
Multiplica por .
Paso 5.2.2
Resta de .
Paso 5.2.3
La respuesta final es .
Paso 5.3
La gráfica es convexa en el intervalo porque es positiva.
Convexo en dado que es positivo
Convexo en dado que es positivo
Paso 6
La gráfica es cóncava cuando la segunda derivada es negativa y convexa cuando la segunda derivada es positiva.
Cóncavo en dado que es negativo
Convexo en dado que es positivo
Paso 7