Cálculo Ejemplos

Hallar las intersecciones en los ejes x e y f(x)=xe^(-x)
Paso 1
Obtén las intersecciones con x.
Toca para ver más pasos...
Paso 1.1
Para obtener la(s) intersección(es) con x, sustituye por y resuelve para .
Paso 1.2
Resuelve la ecuación.
Toca para ver más pasos...
Paso 1.2.1
Reescribe la ecuación como .
Paso 1.2.2
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 1.2.3
Establece igual a .
Paso 1.2.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 1.2.4.1
Establece igual a .
Paso 1.2.4.2
Resuelve en .
Toca para ver más pasos...
Paso 1.2.4.2.1
Resta el logaritmo natural de ambos lados de la ecuación para eliminar la variable del exponente.
Paso 1.2.4.2.2
La ecuación no puede resolverse porque es indefinida.
Indefinida
Paso 1.2.4.2.3
No hay soluciones para
No hay solución
No hay solución
No hay solución
Paso 1.2.5
La solución final comprende todos los valores que hacen verdadera.
Paso 1.3
Intersección(es) con x en forma de punto.
Intersección(es) con x:
Intersección(es) con x:
Paso 2
Obtén las intersecciones con y.
Toca para ver más pasos...
Paso 2.1
Para obtener la(s) intersección(es) con y, sustituye por y resuelve para .
Paso 2.2
Resuelve la ecuación.
Toca para ver más pasos...
Paso 2.2.1
Multiplica por .
Paso 2.2.2
Elimina los paréntesis.
Paso 2.2.3
Simplifica .
Toca para ver más pasos...
Paso 2.2.3.1
Multiplica por .
Paso 2.2.3.2
Cualquier valor elevado a es .
Paso 2.2.3.3
Multiplica por .
Paso 2.3
Intersección(es) con y en forma de punto.
Intersección(es) con y:
Intersección(es) con y:
Paso 3
Enumera las intersecciones.
Intersección(es) con x:
Intersección(es) con y:
Paso 4