Cálculo Ejemplos

Hallar las intersecciones en los ejes x e y f(x) = natural log of x^2+1
Paso 1
Obtén las intersecciones con x.
Toca para ver más pasos...
Paso 1.1
Para obtener la(s) intersección(es) con x, sustituye por y resuelve para .
Paso 1.2
Resuelve la ecuación.
Toca para ver más pasos...
Paso 1.2.1
Reescribe la ecuación como .
Paso 1.2.2
Para resolver , reescribe la ecuación mediante las propiedades de los logaritmos.
Paso 1.2.3
Reescribe en formato exponencial mediante la definición de un logaritmo. Si y son números reales positivos y , entonces es equivalente a .
Paso 1.2.4
Resuelve
Toca para ver más pasos...
Paso 1.2.4.1
Reescribe la ecuación como .
Paso 1.2.4.2
Cualquier valor elevado a es .
Paso 1.2.4.3
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 1.2.4.3.1
Resta de ambos lados de la ecuación.
Paso 1.2.4.3.2
Resta de .
Paso 1.2.4.4
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 1.2.4.5
Simplifica .
Toca para ver más pasos...
Paso 1.2.4.5.1
Reescribe como .
Paso 1.2.4.5.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 1.2.4.5.3
Más o menos es .
Paso 1.3
Intersección(es) con x en forma de punto.
Intersección(es) con x:
Intersección(es) con x:
Paso 2
Obtén las intersecciones con y.
Toca para ver más pasos...
Paso 2.1
Para obtener la(s) intersección(es) con y, sustituye por y resuelve para .
Paso 2.2
Resuelve la ecuación.
Toca para ver más pasos...
Paso 2.2.1
Elimina los paréntesis.
Paso 2.2.2
Elimina los paréntesis.
Paso 2.2.3
Simplifica .
Toca para ver más pasos...
Paso 2.2.3.1
Elevar a cualquier potencia positiva da como resultado .
Paso 2.2.3.2
Suma y .
Paso 2.2.3.3
El logaritmo natural de es .
Paso 2.3
Intersección(es) con y en forma de punto.
Intersección(es) con y:
Intersección(es) con y:
Paso 3
Enumera las intersecciones.
Intersección(es) con x:
Intersección(es) con y:
Paso 4