Ingresa un problema...
Cálculo Ejemplos
,
Paso 1
Considera la función utilizada para buscar la linealización en .
Paso 2
Sustituye el valor de en la función de linealización.
Paso 3
Paso 3.1
Reemplaza la variable con en la expresión.
Paso 3.2
Simplifica .
Paso 3.2.1
Elimina los paréntesis.
Paso 3.2.2
Multiplica por .
Paso 3.2.3
Suma y .
Paso 3.2.4
Cualquier raíz de es .
Paso 4
Paso 4.1
Obtén la derivada de .
Paso 4.1.1
Usa para reescribir como .
Paso 4.1.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 4.1.2.1
Para aplicar la regla de la cadena, establece como .
Paso 4.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.2.3
Reemplaza todos los casos de con .
Paso 4.1.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 4.1.4
Combina y .
Paso 4.1.5
Combina los numeradores sobre el denominador común.
Paso 4.1.6
Simplifica el numerador.
Paso 4.1.6.1
Multiplica por .
Paso 4.1.6.2
Resta de .
Paso 4.1.7
Combina fracciones.
Paso 4.1.7.1
Mueve el negativo al frente de la fracción.
Paso 4.1.7.2
Combina y .
Paso 4.1.7.3
Mueve al denominador mediante la regla del exponente negativo .
Paso 4.1.8
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.9
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.10
Suma y .
Paso 4.1.11
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.12
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.13
Combina fracciones.
Paso 4.1.13.1
Multiplica por .
Paso 4.1.13.2
Combina y .
Paso 4.1.13.3
Mueve el negativo al frente de la fracción.
Paso 4.2
Reemplaza la variable con en la expresión.
Paso 4.3
Simplifica.
Paso 4.3.1
Simplifica el denominador.
Paso 4.3.1.1
Resta de .
Paso 4.3.1.2
Uno elevado a cualquier potencia es uno.
Paso 4.3.2
Multiplica por .
Paso 5
Sustituye los componentes en la función de linealización para obtener la linealización en .
Paso 6
Paso 6.1
Resta de .
Paso 6.2
Combina y .
Paso 7