Cálculo Ejemplos

Evalúe la integral integral de -1 a 1 de 3^(2x-1) con respecto a x
Paso 1
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 1.1
Deja . Obtén .
Toca para ver más pasos...
Paso 1.1.1
Diferencia .
Paso 1.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.3
Evalúa .
Toca para ver más pasos...
Paso 1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.3
Multiplica por .
Paso 1.1.4
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 1.1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.4.2
Suma y .
Paso 1.2
Sustituye el límite inferior por en .
Paso 1.3
Simplifica.
Toca para ver más pasos...
Paso 1.3.1
Multiplica por .
Paso 1.3.2
Resta de .
Paso 1.4
Sustituye el límite superior por en .
Paso 1.5
Simplifica.
Toca para ver más pasos...
Paso 1.5.1
Multiplica por .
Paso 1.5.2
Resta de .
Paso 1.6
Los valores obtenidos para y se usarán para evaluar la integral definida.
Paso 1.7
Reescribe el problema mediante , y los nuevos límites de integración.
Paso 2
Combina y .
Paso 3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4
La integral de con respecto a es .
Paso 5
Combina y .
Paso 6
Sustituye y simplifica.
Toca para ver más pasos...
Paso 6.1
Evalúa en y en .
Paso 6.2
Simplifica.
Toca para ver más pasos...
Paso 6.2.1
Evalúa el exponente.
Paso 6.2.2
Reescribe la expresión mediante la regla del exponente negativo .
Paso 6.2.3
Eleva a la potencia de .
Paso 6.2.4
Reescribe como un producto.
Paso 6.2.5
Multiplica por .
Paso 6.2.6
Multiplica por .
Paso 6.2.7
Combinar.
Paso 6.2.8
Aplica la propiedad distributiva.
Paso 6.2.9
Cancela el factor común de .
Toca para ver más pasos...
Paso 6.2.9.1
Cancela el factor común.
Paso 6.2.9.2
Reescribe la expresión.
Paso 6.2.10
Combina y .
Paso 6.2.11
Cancela el factor común de .
Toca para ver más pasos...
Paso 6.2.11.1
Cancela el factor común.
Paso 6.2.11.2
Reescribe la expresión.
Paso 6.2.12
Para escribir como una fracción con un denominador común, multiplica por .
Paso 6.2.13
Combina y .
Paso 6.2.14
Combina los numeradores sobre el denominador común.
Paso 6.2.15
Simplifica el numerador.
Toca para ver más pasos...
Paso 6.2.15.1
Multiplica por .
Paso 6.2.15.2
Resta de .
Paso 6.2.16
Mueve a la izquierda de .
Paso 6.2.17
Reescribe como un producto.
Paso 6.2.18
Multiplica por .
Paso 6.2.19
Multiplica por .
Paso 6.2.20
Cancela el factor común de y .
Toca para ver más pasos...
Paso 6.2.20.1
Factoriza de .
Paso 6.2.20.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 6.2.20.2.1
Factoriza de .
Paso 6.2.20.2.2
Cancela el factor común.
Paso 6.2.20.2.3
Reescribe la expresión.
Paso 7
El resultado puede mostrarse de distintas formas.
Forma exacta:
Forma decimal:
Paso 8