Cálculo Ejemplos

Gráfico -4x^2-y^2+6x+2y-y+16-10x-27+3y+5-3y^2+5x^2-y^2=9-6y^2-4y-30+10x+17+y-3y-60
Paso 1
Como está en el lado derecho de la ecuación, cambia los lados para que quede en el lado izquierdo de la ecuación.
Paso 2
Mueve todos los términos que contengan las variables al lado izquierdo de la ecuación
Toca para ver más pasos...
Paso 2.1
Resta de ambos lados de la ecuación.
Paso 2.2
Suma a ambos lados de la ecuación.
Paso 2.3
Suma a ambos lados de la ecuación.
Paso 2.4
Resta de ambos lados de la ecuación.
Paso 2.5
Resta de .
Paso 2.6
Suma y .
Paso 2.7
Suma y .
Paso 2.8
Resta de .
Paso 2.9
Resta de .
Paso 2.10
Suma y .
Paso 2.11
Suma y .
Paso 2.12
Resta de .
Paso 2.13
Mueve .
Paso 2.14
Mueve .
Paso 2.15
Mueve .
Paso 2.16
Reordena y .
Paso 3
Mueve todos los términos que no contengan una variable al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 3.1
Suma a ambos lados de la ecuación.
Paso 3.2
Suma y .
Paso 4
Divide ambos lados de la ecuación por .
Paso 5
Completa el cuadrado de .
Toca para ver más pasos...
Paso 5.1
Usa la forma , para obtener los valores de , y .
Paso 5.2
Considera la forma de vértice de una parábola.
Paso 5.3
Obtén el valor de con la fórmula .
Toca para ver más pasos...
Paso 5.3.1
Sustituye los valores de y en la fórmula .
Paso 5.3.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 5.3.2.1
Factoriza de .
Paso 5.3.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 5.3.2.2.1
Factoriza de .
Paso 5.3.2.2.2
Cancela el factor común.
Paso 5.3.2.2.3
Reescribe la expresión.
Paso 5.3.2.2.4
Divide por .
Paso 5.4
Obtén el valor de con la fórmula .
Toca para ver más pasos...
Paso 5.4.1
Sustituye los valores de , y en la fórmula .
Paso 5.4.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 5.4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.4.2.1.1
Eleva a la potencia de .
Paso 5.4.2.1.2
Multiplica por .
Paso 5.4.2.1.3
Divide por .
Paso 5.4.2.1.4
Multiplica por .
Paso 5.4.2.2
Resta de .
Paso 5.5
Sustituye los valores de , y en la forma de vértice .
Paso 6
Sustituye por en la ecuación .
Paso 7
Mueve al lado derecho de la ecuación mediante la suma de a ambos lados.
Paso 8
Completa el cuadrado de .
Toca para ver más pasos...
Paso 8.1
Usa la forma , para obtener los valores de , y .
Paso 8.2
Considera la forma de vértice de una parábola.
Paso 8.3
Obtén el valor de con la fórmula .
Toca para ver más pasos...
Paso 8.3.1
Sustituye los valores de y en la fórmula .
Paso 8.3.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 8.3.2.1
Factoriza de .
Paso 8.3.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 8.3.2.2.1
Factoriza de .
Paso 8.3.2.2.2
Cancela el factor común.
Paso 8.3.2.2.3
Reescribe la expresión.
Paso 8.3.2.2.4
Divide por .
Paso 8.4
Obtén el valor de con la fórmula .
Toca para ver más pasos...
Paso 8.4.1
Sustituye los valores de , y en la fórmula .
Paso 8.4.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 8.4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 8.4.2.1.1
Eleva a la potencia de .
Paso 8.4.2.1.2
Multiplica por .
Paso 8.4.2.1.3
Divide por .
Paso 8.4.2.1.4
Multiplica por .
Paso 8.4.2.2
Resta de .
Paso 8.5
Sustituye los valores de , y en la forma de vértice .
Paso 9
Sustituye por en la ecuación .
Paso 10
Mueve al lado derecho de la ecuación mediante la suma de a ambos lados.
Paso 11
Simplifica .
Toca para ver más pasos...
Paso 11.1
Suma y .
Paso 11.2
Suma y .
Paso 12
Esta es la forma de un círculo. Usa esta forma para determinar el centro y el radio del círculo.
Paso 13
Haz coincidir los valores de este círculo con los de la ecuación ordinaria. La variable representa el radio del círculo, representa el desplazamiento de x desde el origen y representa el desplazamiento de y desde el origen.
Paso 14
El centro del círculo se ubica en .
Centro:
Paso 15
Estos valores representan los valores importantes para la representación gráfica y el análisis de un círculo.
Centro:
Radio:
Paso 16