Cálculo Ejemplos

Hallar los puntos críticos f(x)=(2x^2)/(x^2-1)
Paso 1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2
Diferencia con la regla del cociente, que establece que es donde y .
Paso 1.1.3
Diferencia.
Toca para ver más pasos...
Paso 1.1.3.1
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.2
Mueve a la izquierda de .
Paso 1.1.3.3
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.6
Simplifica la expresión.
Toca para ver más pasos...
Paso 1.1.3.6.1
Suma y .
Paso 1.1.3.6.2
Multiplica por .
Paso 1.1.4
Eleva a la potencia de .
Paso 1.1.5
Usa la regla de la potencia para combinar exponentes.
Paso 1.1.6
Suma y .
Paso 1.1.7
Combina y .
Paso 1.1.8
Simplifica.
Toca para ver más pasos...
Paso 1.1.8.1
Aplica la propiedad distributiva.
Paso 1.1.8.2
Aplica la propiedad distributiva.
Paso 1.1.8.3
Aplica la propiedad distributiva.
Paso 1.1.8.4
Simplifica el numerador.
Toca para ver más pasos...
Paso 1.1.8.4.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.1.8.4.1.1
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 1.1.8.4.1.1.1
Mueve .
Paso 1.1.8.4.1.1.2
Multiplica por .
Toca para ver más pasos...
Paso 1.1.8.4.1.1.2.1
Eleva a la potencia de .
Paso 1.1.8.4.1.1.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 1.1.8.4.1.1.3
Suma y .
Paso 1.1.8.4.1.2
Multiplica por .
Paso 1.1.8.4.1.3
Multiplica por .
Paso 1.1.8.4.1.4
Multiplica por .
Paso 1.1.8.4.1.5
Multiplica por .
Paso 1.1.8.4.2
Combina los términos opuestos en .
Toca para ver más pasos...
Paso 1.1.8.4.2.1
Resta de .
Paso 1.1.8.4.2.2
Suma y .
Paso 1.1.8.5
Mueve el negativo al frente de la fracción.
Paso 1.1.8.6
Simplifica el denominador.
Toca para ver más pasos...
Paso 1.1.8.6.1
Reescribe como .
Paso 1.1.8.6.2
Dado que ambos términos son cuadrados perfectos, factoriza con la fórmula de la diferencia de cuadrados, , donde y .
Paso 1.1.8.6.3
Aplica la regla del producto a .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Establece el numerador igual a cero.
Paso 2.3
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.3.1
Divide cada término en por .
Paso 2.3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.3.2.1.1
Cancela el factor común.
Paso 2.3.2.1.2
Divide por .
Paso 2.3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.3.3.1
Divide por .
Paso 3
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 3.1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 3.2
Resuelve
Toca para ver más pasos...
Paso 3.2.1
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 3.2.2
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 3.2.2.1
Establece igual a .
Paso 3.2.2.2
Resuelve en .
Toca para ver más pasos...
Paso 3.2.2.2.1
Establece igual a .
Paso 3.2.2.2.2
Resta de ambos lados de la ecuación.
Paso 3.2.3
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 3.2.3.1
Establece igual a .
Paso 3.2.3.2
Resuelve en .
Toca para ver más pasos...
Paso 3.2.3.2.1
Establece igual a .
Paso 3.2.3.2.2
Suma a ambos lados de la ecuación.
Paso 3.2.4
La solución final comprende todos los valores que hacen verdadera.
Paso 3.3
La ecuación es indefinida cuando el denominador es igual a , el argumento de una raíz cuadrada es menor que o el argumento de un logaritmo es menor o igual que .
Paso 4
Evalúa en cada valor donde la derivada sea o indefinida.
Toca para ver más pasos...
Paso 4.1
Evalúa en .
Toca para ver más pasos...
Paso 4.1.1
Sustituye por .
Paso 4.1.2
Simplifica.
Toca para ver más pasos...
Paso 4.1.2.1
Elevar a cualquier potencia positiva da como resultado .
Paso 4.1.2.2
Simplifica el denominador.
Toca para ver más pasos...
Paso 4.1.2.2.1
Elevar a cualquier potencia positiva da como resultado .
Paso 4.1.2.2.2
Resta de .
Paso 4.1.2.3
Simplifica la expresión.
Toca para ver más pasos...
Paso 4.1.2.3.1
Multiplica por .
Paso 4.1.2.3.2
Divide por .
Paso 4.2
Evalúa en .
Toca para ver más pasos...
Paso 4.2.1
Sustituye por .
Paso 4.2.2
Simplifica.
Toca para ver más pasos...
Paso 4.2.2.1
Eleva a la potencia de .
Paso 4.2.2.2
Resta de .
Paso 4.2.2.3
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Indefinida
Indefinida
Paso 4.3
Evalúa en .
Toca para ver más pasos...
Paso 4.3.1
Sustituye por .
Paso 4.3.2
Simplifica.
Toca para ver más pasos...
Paso 4.3.2.1
Uno elevado a cualquier potencia es uno.
Paso 4.3.2.2
Resta de .
Paso 4.3.2.3
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Indefinida
Indefinida
Paso 4.4
Enumera todos los puntos.
Paso 5