Cálculo Ejemplos

Hallar los puntos críticos x^6e^x-5
Paso 1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2
Evalúa .
Toca para ver más pasos...
Paso 1.1.2.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 1.1.2.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 1.1.2.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.4
Simplifica.
Toca para ver más pasos...
Paso 1.1.4.1
Suma y .
Paso 1.1.4.2
Reordena los términos.
Paso 1.1.4.3
Reordena los factores en .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Factoriza de .
Toca para ver más pasos...
Paso 2.2.1
Factoriza de .
Paso 2.2.2
Factoriza de .
Paso 2.2.3
Factoriza de .
Paso 2.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.4.1
Establece igual a .
Paso 2.4.2
Resuelve en .
Toca para ver más pasos...
Paso 2.4.2.1
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 2.4.2.2
Simplifica .
Toca para ver más pasos...
Paso 2.4.2.2.1
Reescribe como .
Paso 2.4.2.2.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales.
Paso 2.5
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.5.1
Establece igual a .
Paso 2.5.2
Resuelve en .
Toca para ver más pasos...
Paso 2.5.2.1
Resta el logaritmo natural de ambos lados de la ecuación para eliminar la variable del exponente.
Paso 2.5.2.2
La ecuación no puede resolverse porque es indefinida.
Indefinida
Paso 2.5.2.3
No hay soluciones para
No hay solución
No hay solución
No hay solución
Paso 2.6
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.6.1
Establece igual a .
Paso 2.6.2
Resta de ambos lados de la ecuación.
Paso 2.7
La solución final comprende todos los valores que hacen verdadera.
Paso 3
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 3.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 4
Evalúa en cada valor donde la derivada sea o indefinida.
Toca para ver más pasos...
Paso 4.1
Evalúa en .
Toca para ver más pasos...
Paso 4.1.1
Sustituye por .
Paso 4.1.2
Simplifica.
Toca para ver más pasos...
Paso 4.1.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.1.2.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 4.1.2.1.2
Cualquier valor elevado a es .
Paso 4.1.2.1.3
Multiplica por .
Paso 4.1.2.2
Resta de .
Paso 4.2
Evalúa en .
Toca para ver más pasos...
Paso 4.2.1
Sustituye por .
Paso 4.2.2
Simplifica cada término.
Toca para ver más pasos...
Paso 4.2.2.1
Eleva a la potencia de .
Paso 4.2.2.2
Reescribe la expresión mediante la regla del exponente negativo .
Paso 4.2.2.3
Combina y .
Paso 4.3
Enumera todos los puntos.
Paso 5