Cálculo Ejemplos

Hallar la recta tangente horizontal f(x)=(x-1)(x^2-8x+7)
Paso 1
Obtén la derivada.
Toca para ver más pasos...
Paso 1.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 1.2
Diferencia.
Toca para ver más pasos...
Paso 1.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.5
Multiplica por .
Paso 1.2.6
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.7
Suma y .
Paso 1.2.8
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2.9
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.10
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.11
Simplifica la expresión.
Toca para ver más pasos...
Paso 1.2.11.1
Suma y .
Paso 1.2.11.2
Multiplica por .
Paso 1.3
Simplifica.
Toca para ver más pasos...
Paso 1.3.1
Aplica la propiedad distributiva.
Paso 1.3.2
Aplica la propiedad distributiva.
Paso 1.3.3
Aplica la propiedad distributiva.
Paso 1.3.4
Combina los términos.
Toca para ver más pasos...
Paso 1.3.4.1
Eleva a la potencia de .
Paso 1.3.4.2
Eleva a la potencia de .
Paso 1.3.4.3
Usa la regla de la potencia para combinar exponentes.
Paso 1.3.4.4
Suma y .
Paso 1.3.4.5
Multiplica por .
Paso 1.3.4.6
Mueve a la izquierda de .
Paso 1.3.4.7
Multiplica por .
Paso 1.3.4.8
Resta de .
Paso 1.3.4.9
Suma y .
Paso 1.3.4.10
Resta de .
Paso 1.3.4.11
Suma y .
Paso 2
Establece la derivada igual a luego resuelve la ecuación .
Toca para ver más pasos...
Paso 2.1
Factoriza el lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 2.1.1
Factoriza de .
Toca para ver más pasos...
Paso 2.1.1.1
Factoriza de .
Paso 2.1.1.2
Factoriza de .
Paso 2.1.1.3
Factoriza de .
Paso 2.1.1.4
Factoriza de .
Paso 2.1.1.5
Factoriza de .
Paso 2.1.2
Factoriza.
Toca para ver más pasos...
Paso 2.1.2.1
Factoriza con el método AC.
Toca para ver más pasos...
Paso 2.1.2.1.1
Considera la forma . Encuentra un par de números enteros cuyo producto sea y cuya suma sea . En este caso, cuyo producto es y cuya suma es .
Paso 2.1.2.1.2
Escribe la forma factorizada mediante estos números enteros.
Paso 2.1.2.2
Elimina los paréntesis innecesarios.
Paso 2.2
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2.3
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.3.1
Establece igual a .
Paso 2.3.2
Suma a ambos lados de la ecuación.
Paso 2.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.4.1
Establece igual a .
Paso 2.4.2
Suma a ambos lados de la ecuación.
Paso 2.5
La solución final comprende todos los valores que hacen verdadera.
Paso 3
Resuelve la función original en .
Toca para ver más pasos...
Paso 3.1
Reemplaza la variable con en la expresión.
Paso 3.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 3.2.1
Resta de .
Paso 3.2.2
Simplifica cada término.
Toca para ver más pasos...
Paso 3.2.2.1
Eleva a la potencia de .
Paso 3.2.2.2
Multiplica por .
Paso 3.2.3
Simplifica la expresión.
Toca para ver más pasos...
Paso 3.2.3.1
Resta de .
Paso 3.2.3.2
Suma y .
Paso 3.2.3.3
Multiplica por .
Paso 3.2.4
La respuesta final es .
Paso 4
Resuelve la función original en .
Toca para ver más pasos...
Paso 4.1
Reemplaza la variable con en la expresión.
Paso 4.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 4.2.1
Resta de .
Paso 4.2.2
Simplifica cada término.
Toca para ver más pasos...
Paso 4.2.2.1
Uno elevado a cualquier potencia es uno.
Paso 4.2.2.2
Multiplica por .
Paso 4.2.3
Simplifica la expresión.
Toca para ver más pasos...
Paso 4.2.3.1
Resta de .
Paso 4.2.3.2
Suma y .
Paso 4.2.3.3
Multiplica por .
Paso 4.2.4
La respuesta final es .
Paso 5
Las tangentes horizontales en la función son .
Paso 6