Cálculo Ejemplos

Hallar la recta tangente horizontal f(x)=x^3-6x
Paso 1
Obtén la derivada.
Toca para ver más pasos...
Paso 1.1
Diferencia.
Toca para ver más pasos...
Paso 1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2
Evalúa .
Toca para ver más pasos...
Paso 1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3
Multiplica por .
Paso 2
Establece la derivada igual a luego resuelve la ecuación .
Toca para ver más pasos...
Paso 2.1
Suma a ambos lados de la ecuación.
Paso 2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.2.1
Divide cada término en por .
Paso 2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.2.1.1
Cancela el factor común.
Paso 2.2.2.1.2
Divide por .
Paso 2.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.2.3.1
Divide por .
Paso 2.3
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 2.4
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 2.4.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 2.4.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 2.4.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 3
Resuelve la función original en .
Toca para ver más pasos...
Paso 3.1
Reemplaza la variable con en la expresión.
Paso 3.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 3.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.2.1.1
Reescribe como .
Paso 3.2.1.2
Eleva a la potencia de .
Paso 3.2.1.3
Reescribe como .
Toca para ver más pasos...
Paso 3.2.1.3.1
Factoriza de .
Paso 3.2.1.3.2
Reescribe como .
Paso 3.2.1.4
Retira los términos de abajo del radical.
Paso 3.2.2
Resta de .
Paso 3.2.3
La respuesta final es .
Paso 4
Resuelve la función original en .
Toca para ver más pasos...
Paso 4.1
Reemplaza la variable con en la expresión.
Paso 4.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.2.1.1
Aplica la regla del producto a .
Paso 4.2.1.2
Eleva a la potencia de .
Paso 4.2.1.3
Reescribe como .
Paso 4.2.1.4
Eleva a la potencia de .
Paso 4.2.1.5
Reescribe como .
Toca para ver más pasos...
Paso 4.2.1.5.1
Factoriza de .
Paso 4.2.1.5.2
Reescribe como .
Paso 4.2.1.6
Retira los términos de abajo del radical.
Paso 4.2.1.7
Multiplica por .
Paso 4.2.1.8
Multiplica por .
Paso 4.2.2
Suma y .
Paso 4.2.3
La respuesta final es .
Paso 5
Las tangentes horizontales en la función son .
Paso 6