Cálculo Ejemplos

Hallar la recta tangente horizontal y=x^4+2x^2-x
Paso 1
Establece como una función de .
Paso 2
Obtén la derivada.
Toca para ver más pasos...
Paso 2.1
Diferencia.
Toca para ver más pasos...
Paso 2.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2
Evalúa .
Toca para ver más pasos...
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3
Multiplica por .
Paso 2.3
Evalúa .
Toca para ver más pasos...
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.3
Multiplica por .
Paso 3
Grafica cada lado de la ecuación. La solución es el valor x del punto de intersección.
Paso 4
Resuelve la función original en .
Toca para ver más pasos...
Paso 4.1
Reemplaza la variable con en la expresión.
Paso 4.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.2.1.1
Eleva a la potencia de .
Paso 4.2.1.2
Eleva a la potencia de .
Paso 4.2.1.3
Multiplica por .
Paso 4.2.1.4
Multiplica por .
Paso 4.2.2
Simplifica mediante suma y resta.
Toca para ver más pasos...
Paso 4.2.2.1
Suma y .
Paso 4.2.2.2
Resta de .
Paso 4.2.3
La respuesta final es .
Paso 5
La tangente horizontal en la función es .
Paso 6