Ingresa un problema...
Cálculo Ejemplos
,
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Obtén la primera derivada.
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Evalúa .
Paso 1.1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.2.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.1.1.2.4
Combina y .
Paso 1.1.1.2.5
Combina los numeradores sobre el denominador común.
Paso 1.1.1.2.6
Simplifica el numerador.
Paso 1.1.1.2.6.1
Multiplica por .
Paso 1.1.1.2.6.2
Resta de .
Paso 1.1.1.2.7
Mueve el negativo al frente de la fracción.
Paso 1.1.1.2.8
Combina y .
Paso 1.1.1.2.9
Combina y .
Paso 1.1.1.2.10
Multiplica por .
Paso 1.1.1.2.11
Mueve al denominador mediante la regla del exponente negativo .
Paso 1.1.1.2.12
Factoriza de .
Paso 1.1.1.2.13
Cancela los factores comunes.
Paso 1.1.1.2.13.1
Factoriza de .
Paso 1.1.1.2.13.2
Cancela el factor común.
Paso 1.1.1.2.13.3
Reescribe la expresión.
Paso 1.1.1.3
Evalúa .
Paso 1.1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.3.3
Multiplica por .
Paso 1.1.2
La primera derivada de con respecto a es .
Paso 1.2
Establece la primera derivada igual a , luego resuelve la ecuación .
Paso 1.2.1
Establece la primera derivada igual a .
Paso 1.2.2
Suma a ambos lados de la ecuación.
Paso 1.2.3
Obtén el mcd de los términos en la ecuación.
Paso 1.2.3.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 1.2.3.2
El mínimo común múltiplo (MCM) de una y cualquier expresión es la expresión.
Paso 1.2.4
Multiplica cada término en por para eliminar las fracciones.
Paso 1.2.4.1
Multiplica cada término en por .
Paso 1.2.4.2
Simplifica el lado izquierdo.
Paso 1.2.4.2.1
Cancela el factor común de .
Paso 1.2.4.2.1.1
Cancela el factor común.
Paso 1.2.4.2.1.2
Reescribe la expresión.
Paso 1.2.5
Resuelve la ecuación.
Paso 1.2.5.1
Reescribe la ecuación como .
Paso 1.2.5.2
Divide cada término en por y simplifica.
Paso 1.2.5.2.1
Divide cada término en por .
Paso 1.2.5.2.2
Simplifica el lado izquierdo.
Paso 1.2.5.2.2.1
Cancela el factor común.
Paso 1.2.5.2.2.2
Divide por .
Paso 1.2.5.2.3
Simplifica el lado derecho.
Paso 1.2.5.2.3.1
Divide por .
Paso 1.2.5.3
Eleva cada lado de la ecuación a la potencia de para eliminar el exponente fraccionario en el lado izquierdo.
Paso 1.2.5.4
Simplifica el exponente.
Paso 1.2.5.4.1
Simplifica el lado izquierdo.
Paso 1.2.5.4.1.1
Simplifica .
Paso 1.2.5.4.1.1.1
Multiplica los exponentes en .
Paso 1.2.5.4.1.1.1.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 1.2.5.4.1.1.1.2
Cancela el factor común de .
Paso 1.2.5.4.1.1.1.2.1
Cancela el factor común.
Paso 1.2.5.4.1.1.1.2.2
Reescribe la expresión.
Paso 1.2.5.4.1.1.2
Simplifica.
Paso 1.2.5.4.2
Simplifica el lado derecho.
Paso 1.2.5.4.2.1
Uno elevado a cualquier potencia es uno.
Paso 1.3
Obtén los valores en el lugar donde la derivada es indefinida.
Paso 1.3.1
Convierte las expresiones con exponentes fraccionarios en radicales.
Paso 1.3.1.1
Aplica la regla para reescribir la exponenciación como un radical.
Paso 1.3.1.2
Cualquier número elevado a la potencia de es la misma base.
Paso 1.3.2
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 1.3.3
Resuelve
Paso 1.3.3.1
Para eliminar el radical en el lazo izquierdo de la ecuación, eleva al cubo ambos lados de la ecuación.
Paso 1.3.3.2
Simplifica cada lado de la ecuación.
Paso 1.3.3.2.1
Usa para reescribir como .
Paso 1.3.3.2.2
Simplifica el lado izquierdo.
Paso 1.3.3.2.2.1
Simplifica .
Paso 1.3.3.2.2.1.1
Multiplica los exponentes en .
Paso 1.3.3.2.2.1.1.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 1.3.3.2.2.1.1.2
Cancela el factor común de .
Paso 1.3.3.2.2.1.1.2.1
Cancela el factor común.
Paso 1.3.3.2.2.1.1.2.2
Reescribe la expresión.
Paso 1.3.3.2.2.1.2
Simplifica.
Paso 1.3.3.2.3
Simplifica el lado derecho.
Paso 1.3.3.2.3.1
Elevar a cualquier potencia positiva da como resultado .
Paso 1.4
Evalúa en cada valor donde la derivada sea o indefinida.
Paso 1.4.1
Evalúa en .
Paso 1.4.1.1
Sustituye por .
Paso 1.4.1.2
Simplifica.
Paso 1.4.1.2.1
Simplifica cada término.
Paso 1.4.1.2.1.1
Uno elevado a cualquier potencia es uno.
Paso 1.4.1.2.1.2
Multiplica por .
Paso 1.4.1.2.1.3
Multiplica por .
Paso 1.4.1.2.2
Resta de .
Paso 1.4.2
Evalúa en .
Paso 1.4.2.1
Sustituye por .
Paso 1.4.2.2
Simplifica.
Paso 1.4.2.2.1
Simplifica cada término.
Paso 1.4.2.2.1.1
Reescribe como .
Paso 1.4.2.2.1.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 1.4.2.2.1.3
Cancela el factor común de .
Paso 1.4.2.2.1.3.1
Cancela el factor común.
Paso 1.4.2.2.1.3.2
Reescribe la expresión.
Paso 1.4.2.2.1.4
Elevar a cualquier potencia positiva da como resultado .
Paso 1.4.2.2.1.5
Multiplica por .
Paso 1.4.2.2.1.6
Multiplica por .
Paso 1.4.2.2.2
Suma y .
Paso 1.4.3
Enumera todos los puntos.
Paso 2
Paso 2.1
Evalúa en .
Paso 2.1.1
Sustituye por .
Paso 2.1.2
Simplifica.
Paso 2.1.2.1
Simplifica cada término.
Paso 2.1.2.1.1
Reescribe como .
Paso 2.1.2.1.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.1.2.1.3
Cancela el factor común de .
Paso 2.1.2.1.3.1
Cancela el factor común.
Paso 2.1.2.1.3.2
Reescribe la expresión.
Paso 2.1.2.1.4
Eleva a la potencia de .
Paso 2.1.2.1.5
Multiplica por .
Paso 2.1.2.1.6
Multiplica por .
Paso 2.1.2.2
Suma y .
Paso 2.2
Evalúa en .
Paso 2.2.1
Sustituye por .
Paso 2.2.2
Simplifica.
Paso 2.2.2.1
Simplifica cada término.
Paso 2.2.2.1.1
Uno elevado a cualquier potencia es uno.
Paso 2.2.2.1.2
Multiplica por .
Paso 2.2.2.1.3
Multiplica por .
Paso 2.2.2.2
Resta de .
Paso 2.3
Enumera todos los puntos.
Paso 3
Compara los valores de encontrados para cada valor de para determinar el máximo y el mínimo absolutos en el intervalo dado. El máximo ocurrirá en el valor más alto de y el mínimo ocurrirá en el valor más bajo de .
Máximo absoluto:
Mínimo absoluto:
Paso 4