Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Aplica reglas básicas de exponentes.
Paso 1.1.1.1
Reescribe como .
Paso 1.1.1.2
Multiplica los exponentes en .
Paso 1.1.1.2.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 1.1.1.2.2
Combina y .
Paso 1.1.1.2.3
Mueve el negativo al frente de la fracción.
Paso 1.1.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.1.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3
Reemplaza todos los casos de con .
Paso 1.1.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.1.4
Combina y .
Paso 1.1.5
Combina los numeradores sobre el denominador común.
Paso 1.1.6
Simplifica el numerador.
Paso 1.1.6.1
Multiplica por .
Paso 1.1.6.2
Resta de .
Paso 1.1.7
Combina fracciones.
Paso 1.1.7.1
Mueve el negativo al frente de la fracción.
Paso 1.1.7.2
Combina y .
Paso 1.1.7.3
Mueve al denominador mediante la regla del exponente negativo .
Paso 1.1.8
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.9
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.10
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.11
Multiplica por .
Paso 1.1.12
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.13
Combina fracciones.
Paso 1.1.13.1
Suma y .
Paso 1.1.13.2
Multiplica por .
Paso 1.1.13.3
Combina y .
Paso 1.1.13.4
Mueve el negativo al frente de la fracción.
Paso 1.2
Obtener la segunda derivada.
Paso 1.2.1
Diferencia con la regla del múltiplo constante.
Paso 1.2.1.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.1.2
Aplica reglas básicas de exponentes.
Paso 1.2.1.2.1
Reescribe como .
Paso 1.2.1.2.2
Multiplica los exponentes en .
Paso 1.2.1.2.2.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 1.2.1.2.2.2
Multiplica .
Paso 1.2.1.2.2.2.1
Combina y .
Paso 1.2.1.2.2.2.2
Multiplica por .
Paso 1.2.1.2.2.3
Mueve el negativo al frente de la fracción.
Paso 1.2.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.2.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.2.3
Reemplaza todos los casos de con .
Paso 1.2.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.2.4
Combina y .
Paso 1.2.5
Combina los numeradores sobre el denominador común.
Paso 1.2.6
Simplifica el numerador.
Paso 1.2.6.1
Multiplica por .
Paso 1.2.6.2
Resta de .
Paso 1.2.7
Combina fracciones.
Paso 1.2.7.1
Mueve el negativo al frente de la fracción.
Paso 1.2.7.2
Combina y .
Paso 1.2.7.3
Simplifica la expresión.
Paso 1.2.7.3.1
Mueve a la izquierda de .
Paso 1.2.7.3.2
Mueve al denominador mediante la regla del exponente negativo .
Paso 1.2.7.3.3
Multiplica por .
Paso 1.2.7.3.4
Multiplica por .
Paso 1.2.7.4
Multiplica por .
Paso 1.2.7.5
Multiplica.
Paso 1.2.7.5.1
Multiplica por .
Paso 1.2.7.5.2
Multiplica por .
Paso 1.2.8
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2.9
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.10
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.11
Multiplica por .
Paso 1.2.12
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.13
Combina fracciones.
Paso 1.2.13.1
Suma y .
Paso 1.2.13.2
Combina y .
Paso 1.2.13.3
Multiplica por .
Paso 1.3
La segunda derivada de con respecto a es .
Paso 2
Paso 2.1
Establece la segunda derivada igual a .
Paso 2.2
Establece el numerador igual a cero.
Paso 2.3
Como , no hay soluciones.
No hay solución
No hay solución
Paso 3
No se encontraron valores que puedan hacer que la segunda derivada sea igual a .
No hay puntos de inflexión