Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2
Evalúa .
Paso 1.2.1
Usa para reescribir como .
Paso 1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.2.4
Combina y .
Paso 1.2.5
Combina los numeradores sobre el denominador común.
Paso 1.2.6
Simplifica el numerador.
Paso 1.2.6.1
Multiplica por .
Paso 1.2.6.2
Resta de .
Paso 1.2.7
Mueve el negativo al frente de la fracción.
Paso 1.3
Evalúa .
Paso 1.3.1
Usa para reescribir como .
Paso 1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.3.4
Combina y .
Paso 1.3.5
Combina los numeradores sobre el denominador común.
Paso 1.3.6
Simplifica el numerador.
Paso 1.3.6.1
Multiplica por .
Paso 1.3.6.2
Resta de .
Paso 1.3.7
Mueve el negativo al frente de la fracción.
Paso 1.4
Simplifica.
Paso 1.4.1
Reescribe la expresión mediante la regla del exponente negativo .
Paso 1.4.2
Reescribe la expresión mediante la regla del exponente negativo .
Paso 1.4.3
Combina los términos.
Paso 1.4.3.1
Multiplica por .
Paso 1.4.3.2
Multiplica por .
Paso 2
Paso 2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2
Evalúa .
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Reescribe como .
Paso 2.2.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.2.3.1
Para aplicar la regla de la cadena, establece como .
Paso 2.2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3.3
Reemplaza todos los casos de con .
Paso 2.2.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.5
Multiplica los exponentes en .
Paso 2.2.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.2.5.2
Cancela el factor común de .
Paso 2.2.5.2.1
Factoriza de .
Paso 2.2.5.2.2
Cancela el factor común.
Paso 2.2.5.2.3
Reescribe la expresión.
Paso 2.2.6
Para escribir como una fracción con un denominador común, multiplica por .
Paso 2.2.7
Combina y .
Paso 2.2.8
Combina los numeradores sobre el denominador común.
Paso 2.2.9
Simplifica el numerador.
Paso 2.2.9.1
Multiplica por .
Paso 2.2.9.2
Resta de .
Paso 2.2.10
Mueve el negativo al frente de la fracción.
Paso 2.2.11
Combina y .
Paso 2.2.12
Combina y .
Paso 2.2.13
Multiplica por sumando los exponentes.
Paso 2.2.13.1
Usa la regla de la potencia para combinar exponentes.
Paso 2.2.13.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 2.2.13.3
Combina y .
Paso 2.2.13.4
Combina los numeradores sobre el denominador común.
Paso 2.2.13.5
Simplifica el numerador.
Paso 2.2.13.5.1
Multiplica por .
Paso 2.2.13.5.2
Resta de .
Paso 2.2.13.6
Mueve el negativo al frente de la fracción.
Paso 2.2.14
Mueve al denominador mediante la regla del exponente negativo .
Paso 2.2.15
Multiplica por .
Paso 2.2.16
Multiplica por .
Paso 2.3
Evalúa .
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Reescribe como .
Paso 2.3.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.3.3.1
Para aplicar la regla de la cadena, establece como .
Paso 2.3.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.3.3
Reemplaza todos los casos de con .
Paso 2.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.5
Multiplica los exponentes en .
Paso 2.3.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.3.5.2
Multiplica .
Paso 2.3.5.2.1
Combina y .
Paso 2.3.5.2.2
Multiplica por .
Paso 2.3.5.3
Mueve el negativo al frente de la fracción.
Paso 2.3.6
Para escribir como una fracción con un denominador común, multiplica por .
Paso 2.3.7
Combina y .
Paso 2.3.8
Combina los numeradores sobre el denominador común.
Paso 2.3.9
Simplifica el numerador.
Paso 2.3.9.1
Multiplica por .
Paso 2.3.9.2
Resta de .
Paso 2.3.10
Mueve el negativo al frente de la fracción.
Paso 2.3.11
Combina y .
Paso 2.3.12
Combina y .
Paso 2.3.13
Multiplica por sumando los exponentes.
Paso 2.3.13.1
Mueve .
Paso 2.3.13.2
Usa la regla de la potencia para combinar exponentes.
Paso 2.3.13.3
Combina los numeradores sobre el denominador común.
Paso 2.3.13.4
Resta de .
Paso 2.3.13.5
Mueve el negativo al frente de la fracción.
Paso 2.3.14
Mueve al denominador mediante la regla del exponente negativo .
Paso 2.3.15
Multiplica por .
Paso 2.3.16
Multiplica por .
Paso 3
Paso 3.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.2
Evalúa .
Paso 3.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.2.2
Reescribe como .
Paso 3.2.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 3.2.3.1
Para aplicar la regla de la cadena, establece como .
Paso 3.2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.2.3.3
Reemplaza todos los casos de con .
Paso 3.2.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.2.5
Multiplica los exponentes en .
Paso 3.2.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.2.5.2
Cancela el factor común de .
Paso 3.2.5.2.1
Factoriza de .
Paso 3.2.5.2.2
Cancela el factor común.
Paso 3.2.5.2.3
Reescribe la expresión.
Paso 3.2.5.3
Multiplica por .
Paso 3.2.6
Para escribir como una fracción con un denominador común, multiplica por .
Paso 3.2.7
Combina y .
Paso 3.2.8
Combina los numeradores sobre el denominador común.
Paso 3.2.9
Simplifica el numerador.
Paso 3.2.9.1
Multiplica por .
Paso 3.2.9.2
Resta de .
Paso 3.2.10
Combina y .
Paso 3.2.11
Combina y .
Paso 3.2.12
Multiplica por sumando los exponentes.
Paso 3.2.12.1
Mueve .
Paso 3.2.12.2
Usa la regla de la potencia para combinar exponentes.
Paso 3.2.12.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 3.2.12.4
Combina y .
Paso 3.2.12.5
Combina los numeradores sobre el denominador común.
Paso 3.2.12.6
Simplifica el numerador.
Paso 3.2.12.6.1
Multiplica por .
Paso 3.2.12.6.2
Suma y .
Paso 3.2.12.7
Mueve el negativo al frente de la fracción.
Paso 3.2.13
Mueve al denominador mediante la regla del exponente negativo .
Paso 3.2.14
Multiplica por .
Paso 3.2.15
Multiplica por .
Paso 3.2.16
Multiplica por .
Paso 3.2.17
Multiplica por .
Paso 3.3
Evalúa .
Paso 3.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.3.2
Reescribe como .
Paso 3.3.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 3.3.3.1
Para aplicar la regla de la cadena, establece como .
Paso 3.3.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.3.3.3
Reemplaza todos los casos de con .
Paso 3.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.3.5
Multiplica los exponentes en .
Paso 3.3.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.3.5.2
Multiplica .
Paso 3.3.5.2.1
Combina y .
Paso 3.3.5.2.2
Multiplica por .
Paso 3.3.5.3
Mueve el negativo al frente de la fracción.
Paso 3.3.6
Para escribir como una fracción con un denominador común, multiplica por .
Paso 3.3.7
Combina y .
Paso 3.3.8
Combina los numeradores sobre el denominador común.
Paso 3.3.9
Simplifica el numerador.
Paso 3.3.9.1
Multiplica por .
Paso 3.3.9.2
Resta de .
Paso 3.3.10
Combina y .
Paso 3.3.11
Combina y .
Paso 3.3.12
Multiplica por sumando los exponentes.
Paso 3.3.12.1
Mueve .
Paso 3.3.12.2
Usa la regla de la potencia para combinar exponentes.
Paso 3.3.12.3
Combina los numeradores sobre el denominador común.
Paso 3.3.12.4
Suma y .
Paso 3.3.12.5
Mueve el negativo al frente de la fracción.
Paso 3.3.13
Mueve al denominador mediante la regla del exponente negativo .
Paso 3.3.14
Multiplica por .
Paso 3.3.15
Multiplica por .
Paso 3.3.16
Multiplica por .
Paso 3.3.17
Multiplica por .
Paso 3.3.18
Multiplica por .
Paso 4
Paso 4.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.2
Evalúa .
Paso 4.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.2.2
Reescribe como .
Paso 4.2.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 4.2.3.1
Para aplicar la regla de la cadena, establece como .
Paso 4.2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.2.3.3
Reemplaza todos los casos de con .
Paso 4.2.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.2.5
Multiplica los exponentes en .
Paso 4.2.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 4.2.5.2
Cancela el factor común de .
Paso 4.2.5.2.1
Factoriza de .
Paso 4.2.5.2.2
Cancela el factor común.
Paso 4.2.5.2.3
Reescribe la expresión.
Paso 4.2.5.3
Multiplica por .
Paso 4.2.6
Para escribir como una fracción con un denominador común, multiplica por .
Paso 4.2.7
Combina y .
Paso 4.2.8
Combina los numeradores sobre el denominador común.
Paso 4.2.9
Simplifica el numerador.
Paso 4.2.9.1
Multiplica por .
Paso 4.2.9.2
Resta de .
Paso 4.2.10
Combina y .
Paso 4.2.11
Combina y .
Paso 4.2.12
Multiplica por sumando los exponentes.
Paso 4.2.12.1
Mueve .
Paso 4.2.12.2
Usa la regla de la potencia para combinar exponentes.
Paso 4.2.12.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 4.2.12.4
Combina y .
Paso 4.2.12.5
Combina los numeradores sobre el denominador común.
Paso 4.2.12.6
Simplifica el numerador.
Paso 4.2.12.6.1
Multiplica por .
Paso 4.2.12.6.2
Suma y .
Paso 4.2.12.7
Mueve el negativo al frente de la fracción.
Paso 4.2.13
Mueve al denominador mediante la regla del exponente negativo .
Paso 4.2.14
Multiplica por .
Paso 4.2.15
Multiplica por .
Paso 4.2.16
Multiplica por .
Paso 4.3
Evalúa .
Paso 4.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.3.2
Reescribe como .
Paso 4.3.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 4.3.3.1
Para aplicar la regla de la cadena, establece como .
Paso 4.3.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.3.3.3
Reemplaza todos los casos de con .
Paso 4.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.3.5
Multiplica los exponentes en .
Paso 4.3.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 4.3.5.2
Multiplica .
Paso 4.3.5.2.1
Combina y .
Paso 4.3.5.2.2
Multiplica por .
Paso 4.3.5.3
Mueve el negativo al frente de la fracción.
Paso 4.3.6
Para escribir como una fracción con un denominador común, multiplica por .
Paso 4.3.7
Combina y .
Paso 4.3.8
Combina los numeradores sobre el denominador común.
Paso 4.3.9
Simplifica el numerador.
Paso 4.3.9.1
Multiplica por .
Paso 4.3.9.2
Resta de .
Paso 4.3.10
Combina y .
Paso 4.3.11
Combina y .
Paso 4.3.12
Multiplica por sumando los exponentes.
Paso 4.3.12.1
Mueve .
Paso 4.3.12.2
Usa la regla de la potencia para combinar exponentes.
Paso 4.3.12.3
Combina los numeradores sobre el denominador común.
Paso 4.3.12.4
Suma y .
Paso 4.3.12.5
Mueve el negativo al frente de la fracción.
Paso 4.3.13
Mueve al denominador mediante la regla del exponente negativo .
Paso 4.3.14
Multiplica por .
Paso 4.3.15
Multiplica por .
Paso 4.3.16
Multiplica por .
Paso 5
La cuarta derivada de con respecto a es .