Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.1.1
Para aplicar la regla de la cadena, establece como .
Paso 1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3
Reemplaza todos los casos de con .
Paso 1.2
La derivada de con respecto a es .
Paso 1.3
Multiplica por .
Paso 2
Paso 2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 2.3
La derivada de con respecto a es .
Paso 2.4
Eleva a la potencia de .
Paso 2.5
Eleva a la potencia de .
Paso 2.6
Usa la regla de la potencia para combinar exponentes.
Paso 2.7
Suma y .
Paso 2.8
La derivada de con respecto a es .
Paso 2.9
Eleva a la potencia de .
Paso 2.10
Eleva a la potencia de .
Paso 2.11
Usa la regla de la potencia para combinar exponentes.
Paso 2.12
Suma y .
Paso 2.13
Simplifica.
Paso 2.13.1
Aplica la propiedad distributiva.
Paso 2.13.2
Multiplica por .
Paso 3
Paso 3.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.2
Evalúa .
Paso 3.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.2.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 3.2.2.1
Para aplicar la regla de la cadena, establece como .
Paso 3.2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.2.2.3
Reemplaza todos los casos de con .
Paso 3.2.3
La derivada de con respecto a es .
Paso 3.2.4
Multiplica por .
Paso 3.2.5
Multiplica por .
Paso 3.3
Evalúa .
Paso 3.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.3.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 3.3.2.1
Para aplicar la regla de la cadena, establece como .
Paso 3.3.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.3.2.3
Reemplaza todos los casos de con .
Paso 3.3.3
La derivada de con respecto a es .
Paso 3.3.4
Multiplica por .
Paso 3.4
Combina los términos.
Paso 3.4.1
Reordena los factores de .
Paso 3.4.2
Suma y .
Paso 4
Paso 4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 4.3
La derivada de con respecto a es .
Paso 4.4
Eleva a la potencia de .
Paso 4.5
Eleva a la potencia de .
Paso 4.6
Usa la regla de la potencia para combinar exponentes.
Paso 4.7
Suma y .
Paso 4.8
La derivada de con respecto a es .
Paso 4.9
Eleva a la potencia de .
Paso 4.10
Eleva a la potencia de .
Paso 4.11
Usa la regla de la potencia para combinar exponentes.
Paso 4.12
Suma y .
Paso 4.13
Simplifica.
Paso 4.13.1
Aplica la propiedad distributiva.
Paso 4.13.2
Multiplica por .
Paso 5
La cuarta derivada de con respecto a es .