Cálculo Ejemplos

Evaluar utilizando la regla de L'Hôpital límite a medida que x se aproxima a 1 de ( logaritmo natural de x^2)/(x^2-1)
Paso 1
Evalúa el límite del numerador y el límite del denominador.
Toca para ver más pasos...
Paso 1.1
Resta el límite del numerador y el límite del denominador.
Paso 1.2
Evalúa el límite del numerador.
Toca para ver más pasos...
Paso 1.2.1
Evalúa el límite.
Toca para ver más pasos...
Paso 1.2.1.1
Mueve el límite dentro del logaritmo.
Paso 1.2.1.2
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 1.2.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.2.3
Simplifica la respuesta.
Toca para ver más pasos...
Paso 1.2.3.1
Uno elevado a cualquier potencia es uno.
Paso 1.2.3.2
El logaritmo natural de es .
Paso 1.3
Evalúa el límite del denominador.
Toca para ver más pasos...
Paso 1.3.1
Evalúa el límite.
Toca para ver más pasos...
Paso 1.3.1.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 1.3.1.2
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 1.3.1.3
Evalúa el límite de que es constante cuando se acerca a .
Paso 1.3.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.3.3
Simplifica la respuesta.
Toca para ver más pasos...
Paso 1.3.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.3.3.1.1
Uno elevado a cualquier potencia es uno.
Paso 1.3.3.1.2
Multiplica por .
Paso 1.3.3.2
Resta de .
Paso 1.3.3.3
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.3.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 3
Obtén la derivada del numerador y el denominador.
Toca para ver más pasos...
Paso 3.1
Diferencia el numerador y el denominador.
Paso 3.2
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 3.2.1
Para aplicar la regla de la cadena, establece como .
Paso 3.2.2
La derivada de con respecto a es .
Paso 3.2.3
Reemplaza todos los casos de con .
Paso 3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.4
Combina y .
Paso 3.5
Combina y .
Paso 3.6
Cancela el factor común de y .
Toca para ver más pasos...
Paso 3.6.1
Factoriza de .
Paso 3.6.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 3.6.2.1
Factoriza de .
Paso 3.6.2.2
Cancela el factor común.
Paso 3.6.2.3
Reescribe la expresión.
Paso 3.7
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.8
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.9
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.10
Suma y .
Paso 4
Multiplica el numerador por la recíproca del denominador.
Paso 5
Combina factores.
Toca para ver más pasos...
Paso 5.1
Multiplica por .
Paso 5.2
Eleva a la potencia de .
Paso 5.3
Eleva a la potencia de .
Paso 5.4
Usa la regla de la potencia para combinar exponentes.
Paso 5.5
Suma y .
Paso 6
Evalúa el límite.
Toca para ver más pasos...
Paso 6.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 6.1.1
Cancela el factor común.
Paso 6.1.2
Reescribe la expresión.
Paso 6.2
Divide el límite mediante la regla del cociente de límites en el límite en que se aproxima a .
Paso 6.3
Evalúa el límite de que es constante cuando se acerca a .
Paso 6.4
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 7
Evalúa el límite de mediante el ingreso de para .
Paso 8
Simplifica la respuesta.
Toca para ver más pasos...
Paso 8.1
Uno elevado a cualquier potencia es uno.
Paso 8.2
Divide por .