Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Resta el límite del numerador y el límite del denominador.
Paso 1.2
Evalúa el límite del numerador.
Paso 1.2.1
Evalúa el límite.
Paso 1.2.1.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 1.2.1.2
Mueve el límite dentro del exponente.
Paso 1.2.1.3
Evalúa el límite de que es constante cuando se acerca a .
Paso 1.2.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.2.3
Simplifica la respuesta.
Paso 1.2.3.1
Simplifica cada término.
Paso 1.2.3.1.1
Cualquier valor elevado a es .
Paso 1.2.3.1.2
Multiplica por .
Paso 1.2.3.2
Resta de .
Paso 1.3
Evalúa el límite de mediante el ingreso de para .
Paso 1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 3
Paso 3.1
Diferencia el numerador y el denominador.
Paso 3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.3
Diferencia con la regla exponencial, que establece que es donde = .
Paso 3.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.5
Suma y .
Paso 3.6
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4
Paso 4.1
Divide por .
Paso 4.2
Mueve el límite dentro del exponente.
Paso 5
Evalúa el límite de mediante el ingreso de para .
Paso 6
Cualquier valor elevado a es .